
utility
software
package
reference manual

Chapter 1

Contents

Introduction

1.1 Contents of the Utility Software Package 1-1
1.2 System Requirements 1-2
1.3 Whom Is the Utility Software Package for? 1-2
1.4 A Word about This Manual 1-3
1.5 Overview 1-4

Chapter 2 Features of the Utility Software Package

2.1 ~o Assembly Languages 2-2
2.2 Relocatability 2-2
2.3 Macro Facility 2-2
2.4 Conditional Assemblv 2-3
2.5 Utility Programs 2-3

c·

Chapter 3

3.1
3.2
3.3
3.4
3.4.1
3.4.2

Chapter 4

Programming with the Utility Software Pac~age

Source File Organization 3-1
Symbols 3-3
Opcodes and Pseudo-ops 3-9
Arguments: Expressions 3-10

Operands 3-10
Operators 3-14

Assembler Features

4.1 Single-Function Pseudo-ops 4-1
4.2 Macro Facility 4-36
4.3 Conditional Assembly Facility 4-4S

Chapter 5 Running MACRO-SO

5.1 Invoking MACRO-SO 5-2
5.2 MACRO-SO Command Line 5-2
5.3 MACRO-SO Listing File Formats 5-13
5.4 Error Codes and Messages 5-15

.
<_.

Chapter 6

6.1
6.2
6.2.1
6.2.2
6.3

LINK-SO Linking Loader

Invoking LINK-SO 6-1
LINK-SO Commands 6-2

Filenames 6-3
Switches 6-4

Error Messages 6-19

Chapter 7

7.1
7.2

Chapter 8

CREF-80 Cross Reference Facility

Creating a CREF Listing 7-1
CREF Listing Control Pseudo-ops

LIB-80 Library Manager

7-3

8.1
8.2

Sample LIB-80 Session
LIB-80 Commands 8-3

8-2

Appendix A

Appendix B

Compatibility with Other Assemblers

The Utility Software Package with TEKDOS

B.l
B.2
B.3
B.4

Appendix C

TEKDOS Command Files
MACRO-80 B-1
CREF-80 B-2
LINK-80 B-2

ASCII Character Codes

B-1

Appendix D

Appendix E

Appendix F

Format of LINK Compatible Object Files

Table of MACRO-80 Pseudo-ops

Table of Opcodes

c
F.l
F.2

Index

Z80 Opcodes
8080 Opcodes

F-l
F-3

C
:~

, '

Chapter 1

Contents

Introduction

(

1.1 Contents of the Utility Software Package 1-1
1.2 System Requirements 1-2
1.3 Whom Is the Utility Software Package for? 1-2

Books on Assembly Language Programming 1-2
1.4 A Word about This Manual 1-3

Organization 1-3
Syntax Notation 1-3

1.5 Overview 1-4

CHAPTER 1

INTRODUCTION

the world of Utility Software Package
During the course of this manual, we will
Utility Software Package is, why you use it,
it.

Welcome to
programming.
learn what the
and how to-use

1.1 CONTENTS OF THE UTILITY SOFTWARE PACKAGE

One diskette with the following files:

MaO.COM - ~~CRO-80 Macro Assembler program
LaO.COM - LINK-aO Linking Loader program
CREFaO.COM - Cross-Reference Facility
LIB.COM - Library Manager program

(CP/M versions only)

One Manual

The Utility Software Package Reference Manual

IMPORTANT

Always make backup copies of
your diskettes before using
them.

INTRODUCTION Page 1-2

1.2 SYSTEM REQUIREMENTS

MACRO-80 requires about 19K of memory, plus about 4K for
buffers. LINK-80 requires about 14K of memory. CREF-80
requires about 6K of memory. LIB-80 requires about 5K of
memory. The operating system usually requires about 6K
bytes of memory. So a minimum system requirement for the
Utility Software Package is 29K bytes of memory. While it
is possible to run Utility Software Package programs with
only one disk drive, we recommend strongly that you have two
disk drives available.

1.3 WHOM IS THE UTILITY SOFTWARE PACKAGE FOR?

The Utility Software Package is a complete assembly language
development system with powerful features that support
advanced assembly language programming skills. This manual
describes the Utility Software Package thoroughly, but the
descriptions assume that the reader understands assembly
language programming and has experience with an assembler.

(

If you have never
suggest that you
assembler.

programmed
gain some

in assembly
experience

language, we
on a simpler

(

Books on Assembly Language Programming

We can also recommend the following books for
instruction in assembly language programming:

basic

Leventhal, Lance
Programming.

A. 8080A/808S Assembly Language
Berkeley: Osborne/McGraw-Hill, 1978.

Leventhal, Lance A. Z80 Assemblv Language Programming.
Berkeley: Osborne/McGraw-Hill, 1979.

Zaks, Rodnay.
Berkeley:

Programming the Z80.
Sybex, 1980.

Second edition.

I

~

(~

INTRODUCTION

1.4 A WORD ABOUT THIS MANUAL

Organization

Page 1-3

< >

(

In front of each chapter is a contents page that expands the
entries on the contents page at the beginning of the manual.
Chapter I gives introductory, background, and overview
information about the Utility Software Package. Chapters
2-8 describe the use and operation of the Utility Software
Package programs. The manual concludes with several
appendices which contain some helpful reference information.

Syntax Notation

The following notation is used throughout this manual in
descriptions of command and statement syntax:

[] Square brackets indicate that the enclosed entry is
optional.

Angle brackets indicate user entered data. When
the angle brackets enclose lower case text, the
user must type in an entry defined by the text;
for example, <filename>. When the angle brackets
enclose upper case text, the user must press the
key named by the text; for example, <RETURN>.

{} Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen unless the
entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as
many times as needed or desired.

CAPS Capital letters indicate portions of statements or
commands that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks,
and equal signs, must be entered exactly as shown.

INTRODUCTION

1.5 OVERVIP~

Page 1-4

(
The Utility Software Package is an assembly language
programming system that parallels the design and programming
power of assemblers and related software on big computers.
Consequently, the design and use of the Utility Software
Package involves traits and methods that may be new to you.
As explained earlier, we assume that you have some
experience in assembly language programming. Your knowledge
of when and why to use 9articular operation codes and
pseudo-operations is the base on which you can build your
knowledge of the Utility Software Package.

One word of caution: some terms used in this manual may be
familiar to you from other sources. Be sure to notice
especially how familiar terms are used in the Utility
Software Package so that you are not confused or misled.

The Utility Software Package programming relies on two
im90rtant software programs -- an assembler and a linking
loader. To develop an assembly language program that runs
on your computer, you must use both the assembler and the
linking loader. The whole process is diagrammed on the
facing page. The numbers on the diagram correspond to the
numbers in the explanations below.

1. You create an assembly language source program using
some editor.

(

2. You assemble your sour~e program using
macro assembler. The result is a file
intermediate object code. This intermediate
to machine code than your source code,
executed.

the MACRO-SO
that contains

code is closer
but cannot be

These are only
step process
program allows
time and to
following ways:

3. You link and load separately assembled file(s) into a
single program file using the LINK-SO linking loader.
LINK-BO converts the file(s) of intermediate code into a
single file of true machine code which can be executed from
the operating system.

the basics of the whole process. This two
of converting a source file to an executable
you to manipulate your programs to save you

extend your programs' usefulness in the

(,

INTRODUCTION

1. EDITOR

1
source Ii Ie

executahle file

Page 1-5

Figure 1.1: Developing Assembly Language Programs

INTRODUCTION Page 1-6

First, you can break your program in convenient parts called
modules. You can manipulate these modules at will. You can
assemble the modules individually. You fix only those that
do not work right and reassemble them. This saves you time.

(

Second, you can
memory, subject
to place modules
under the fourth

manipulate the placement
to certain restrictions;

for you. (This trait is
trait.)

of modules in
or allow LINK-SO
described below

Third, you can use assembled modules in other programs or in
variations of the original program because there is no
permanent connection among the modules. This saves you
recoding time if a part of a program performs some useful,
often-repeated task.

Whenever you want to combine assembled modules into an
executable program, you use the LINK-SO linking loader. If
you simply tell LINK-SO the modules you want combined, it
loads them end-to-end in memory. But you have an additional
choice. You can set up a direct connection between a
statement in one module and a statement inside another
module. This direct connection (or "link") means that a
value (usually a program address) in one module can be used
in another module exactly at the point required.

LINK-SO creates the links between modules. You give LINK-SO
the signals it needs to create these links. The signals are
called symbols, specifically EXTERNAL symbols and PUBLIC
symbols. An EXTERNAL symbol signals LINK-SO that you want
it to link a value from another module into this point in
the program. The value to be linked-in is defined by a
PUBLIC symbol, which is a signal that directs LINK-SO to the
correct- module and statement line. LINK-BO then links the
PUBLIC symbol's value to the EXTERNAL symbol, then continues
loading the module with the EXTERNAL symbol. The diagram
below suggests this process.

;loading a module with
;an EXTERNAL symbol

(

EXTERNAL

PUBLIC

;here LINK-80 looks for
;the PUBLIC symbol
;and links its value
;then LINK-80
;continues to load
;the module with an
;EXTERNAL symbol

l
Figure 1.2: PUBLIC symbol linked into module at EXTERNAL

INTRODUCTION Page 1-7

istart address

fixed
address
103H

MODI

Fourth, modules can be assembled into different modes, even
within a single module. The four modes are Absolute,
Data-relative, Code-relative, and COMMON-relative. The
absolute mode is similar the code produced by most small
system assemblers. The code is assembled at fixed addresses
in memory. The other three modes are very different and are
the reason you can place modules anywhere in memory. Each
of the three relative modes assembles to a separate segment.
The addresses within each segment are relative addresses.
This means the first instruction byte of a segment is given
a relative address of 0, the second byte is given relative
address 1, and so on. When LINK-80 loads the module, it
changes the relative addresses in the segments to fixed
addresses in memory. The relative addresses are offsets
from some fixed address that LINK-80 uses. For the first
module loaded, this address is l03H under the CP/M operating
system. Thus, relative addresses in the first module are
offsets from l03H. The second module is loaded at the end
of the first, and the relative addre?ses are offsets from
the last address in the first module. Subsequent modules
are loaded (and offset) similarly. You can change the
default start address for the first module at link time.
Then, the relative addresses become offsets from the fixed
address you specify.

relative
address

0,-------------,

(

(

100

o MOD2

203H

204H
iend MOD1, begin MOD2

250 454H
jend of MOD2

Figure 1.3: Loading Changes Relative Addresses to Fixed

One effect of this relative addressing method is that ORG
statements become very different creatures. For the
relative segments, the ORG statement specifies an offset
rather than a fixed address (as most assemblers do -- ORG
specifies a fixed address in the absolute segment). Thus, a
relative segment with an ORG statement would skip over a
specified number of addresses before beginning to load the
rest of the code in that segment.

INTRODUCTION Page 1-8

relative
address

o
•
•
•
•

100

MODI
•
•
•
•

fixed
address
103H ;start address

203H

c

o
50

•
•
•

MOD2
ORG 50

•
•
•

204H
254H

;end MODI, begin MOD2

;skips 50 addresses

300 • 504H
;end of MOD2

•
•
•

•
•

You should read carefully the description of ORG found in
Chapter 4.

The ability to manipulate the placement of modules in
memory, with some restrictions (see Chapter 6), derives from
the assembler giving relative addresses instead of absolute
addresses. This ability to manipulate module placement in
memory is called re1ocatabi1itYi the modules are
re1ocatab1ei the intermediate code produced by the
assembler for the three relative segments is called
re1ocatab1e code. That is why assembled modules are given
the filename extension .REL, and these assembled files are
called REL files.

Each mode serves a different purpose. The absolute mode
contains code you want placed in specific memory addresses.
Each relative mode is loaded into memory as a separate
segment. The data-relative segment contains data items and
any code that may change often and should only be placed in
RAM. The code-relative segment contains code that will not
change and therefore is suitable for ROM and PROM. The
COMMON-relative segment contains data items that can be
shared by more than one module.

Source statements in these modes take on the traits of their
mode. The symbols and expressions in statements are
evaluated by the assembler according to the mode in which
they are found and the type of data and other entries that
define the symbol or make up the parts of an expression.
The mode traits attributed to a symbol or expression are
called, approoriately, its Mode; that is, a symbol or
expression is absolute, data-relative, code-relative, or
COMMON-relative. This concept of mode is important because
it is the source of both flexibility and complexity. If all

(

l

INTRODUCTION Page 1-9

C
-,
, '

(

source statements are assembled in absolute mode, symbols
and expressions always have absolute values, and using
absolute symbols and expressions is not complex. The
problem with absolute mode is that relocatability is
possible only through the most complex and time consuming of
techniques. Absolute mode effectively reduces your ability
to reuse code in a new program.

The relative modes (data, code, and COMMON) are the basis of
relocatability and, therefore, of the flexibility to
manipulate modules. The complexity is that relative symbols
and relative expressions are much more difficult to
evaluate. In fact, the assembler must pass through the
source statements twice to assemble a module. During the
first pass, the assembler evaluates the statements and
expands macro call statemnts, calculates the amount of code
it will generate, and builds a symbol table where all
symbols and macros are assigned values. During the second
pass, the assembler fills in the symbol and expression
values from the symbol table, expands macro call statements,
and emits the intermediate code into a REL file.

When the REL files are given to LINK-SO, the segments are
linked together and loaded into fixed memory addresses. The
relative addresses are converted to absolute addresses. The
fixed addresses are assigned to the relative segments in the
order: COMMON-relative and data-relative, then
code-relative. The relative segments are loaded relative to
default address I03H under CP/M. (The addresses IOOH-I02H
are used for a jump to the start address of the first
program instruction, which is normally the first address
following the COMMON and data area.)

When LINK-SO is finished linking modules together and
assigning addresses, the result can be saved in a file that
is executable from the operating system. Executing the
program is then as simple as entering an operating system
command, so these linked and loaded files are called command
files.

This short overview should give you a general idea of the
workings and processes of the Utility Software Package.
Short descriptions of all the Utility Software Package
programs are given in the next chapter. Detailed
descriptions are given in the rest of this manual.
Therefore, the information contained in this overview will
be repeated in fuller detail elsewhere in this manual.

As an aid to the description in the next chapter and the
rest of this manual, the next page contains an expanded
version of the diagram at the beginning of this overview.
The expanded diagram shows the relationships among all the
programs in the Utility Software Package.

INTRODUCTION

-
CP/M
Editor

Page 1-10

(
L J

.COM

1

o
l
~"···"· ~

L:-J
EJ listing file

MACRQ-..SO

1 0-{~
U~ -8 ~":::::~L:J ~,.~~.~

---B
1-·--l

----_.[:]

EJ

(

Figure 1.5: among programsRelationships

Chapter 2

Contents

Features of the Utility Software Package

2-3
Facility

2-4

C>·

"

2.1
.2 ••2
2.3
2.4
2.5

Two Assembly Languages 2-2
Relocatability 2-2
Macro Facility 2-2
Conditional Assembly. 2-3
Utility Programs 2-3

LINK-80 Linking Loader
CREF-80 Cross Reference
LIB-80 Library Manager

2-4

(

CHAPTER 2

FEATURES OF THE UTILITY SOFTWARE PACKAGE

The Utility Software Package is an Assembly Language
Development System that assembles relocatable code from two
assembly languages, supports a macro facility and
conditional assembly, and provides several utility programs
that enhance program development.

WHAT IS AN UTILITY SOFTWARE PACKAGE?

An Utility software package is more than an assembler. An
Utility Software Package is a series of related utility
programming tools:

for assembling an assembly language source file,

for linking several assembled modules into one
program,

for creating library files of subroutines
assembled modules),

(also

for creating cross-reference listings of program
symbols,

(machinebinaryfor testing and debugging
executable) program files,

Microsoft's Utility Software Package provides versions of
these tools that make the Utility Software Package extremely
powerful and useful as a program development system. Each
tool in the Utility Software Package is described in detail
in its own chapter.

l

FEATURES OF THE UTILITY SOFTWARE PACKAGE

2.1 ~70 ASSEMBLY LANGUAGES

Page 2-2

(
The assembler in your Utility Software Package supports two
assembly languages. Microsoft's MACRO-SO macro assembler
supports both S080 and ZSO mnemonics.

2.2 RELOCATABILITY

MACRO-SO can produce modules of relocatable code. Also,
like many assemblers,· the MACRO-SO assembler can produce
absolute code. The key advantage of relocatability is that
programs can be assembled in modules. Then, within certain
restrictions described in Chapter 6, the modules can then be
located almost anywhere in memory.

Relocatable modules also offer the advantages of easier
coding and faster testing, debugging, and modifying. In
addition, it is possible to specify 'segments of assembled
code that will later be loaded into RAM or into ROM/PROM.

Relocatability will be discussed further under Section 3.2,
Symbols.

2.3 MACRO FACILITY

The MACRO-SO assembler supports a complete, Intel standard
macro facility. The macro facility allows a programmer to
write blocks of code for a set of instructions used
frequently. The need for recoding these instructions is
eliminated.

The programmer gives this block of code a name, called a
macro. The instructions are the macro definition. Each
time the set of instructions is needed, instead of recoding
the set of instructions, the programmer simply "calls" the
macro. MACRO-SO expands the macro call by assembling the
block of instructions into the program automatically. The
macro call also passes parameters to the assembler for use
during macro expansion. The use of macros reduces the size
of a source module because the macro definitions are stored
in disk files and come into the module only when needed
during assembly.

Macros can be nested, that is, a macro can be called from
inside another macro. Nesting of macros is limited only by
memory.

(

l)

c""

FEATURES OF THE UTILITY SOFTWARE PACKAGE

2.4 CONDITIONAL ASSEMBLY

Page 2-3

MACRO-SO also supports conditional assembly. The programmer
can determine a condition under" which portions of the
program are either assembled or not assembled. Conditional
assembly capability is enhanced by a complete set of
conditional pseudo operations that include testing of
assembly pass, symbol definition, and parameters to macros.
Conditionals may be nested up to 255 levels.

2.5 UTILITY PROGRAMS

~hree utility programs provide the additional support needed
to develop powerful and useful assembly language programs:
LINK-SO Linking Loader, LIB-BO Library Manager, and CREF-SO
Cross Reference Facility.

LINK-BO Linking Loader

The Microsoft LINK-SO Linking Loader is used to convert the
assembled module (.REL file) into an executable module (.COM
file). The .REL file is not an executable file.

LINK-BO can also be used to:

load, link, and run one or more modules

load relocatable
locations

programs at user-specified

load program areas and data areas into separate
memory locations

While performing these tasks, LINK-BO resolves external
references between modules (that is, any program that calls
an external value, something defined in a different program
or module, will have the outside references filled at link
time by LINK-SO), and saves the executable object (.COM)
file on disk, so it can be run from the operating system.

These load capabilities mean that the assembled program may
be linked with the user's library to add routines to one of
the high-level langauge runtime libraries. Assembled
programs can be linked to high-level language programs
COBOL-SO and FORTRAN-SO, for example as well as to
MACRO-BO programs.

FEATURES OF THE UTILITY SOFTWARE PACKAGE Page 2-4

CREF-80 Cross Reference Facility

The CREF-80 Cross Reference Facility processes a cross
reference file generated by MACRO-SO. The result is a cross
reference listing that can aid in the debugging of your
program.

LIB-SO Library Manager (CP/M versions only)

LIB-80 is designed as a runtime library manager for CP/M
versions of the Utility Software Package. LIB-SO may also
be used to create your own library of assembly language
subroutines.

LIB-SO creates runtime libraries from assembly language
programs that are subroutines to COBOL, FORTRAN, and other
assembly language programs. The programs collected by
LIB-SO may be special modules created by the programmer or
modules from an existing library. .With LIB-SO, you can
create specialized runtime libraries for whatever execution
requirements you design.

(

(

l

c·

Chapter 3

Contents

Programming with the Utility Software Package

3.1

3.2

3.3
3.4
3.4.1

3.4.2

Source File Organization 3-1
File Organization 3-1
Statement Line Format 3-1
Comments 3-2

Symbols 3-3
LABEL: 3-4
PUBLIC 3-5
EXTERNAL 3':'6
Modes 3-7

Opcodes and Pseudo-ops 3-9
Arguments: Expressions 3-10

Operands 3~10

Numbers 3-10
ASCII Strings 3-11
Character Constants 3-11'
SYmbols in Expressions 3-12
Current Program Counter Symbol
8080 Opcodes as Operands 3-13

Operators 3-14

3-13

(,

(~: \
\..' ..~'

(
.~

..

CHAPTER 3

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE

This chapter describes what the user needs to know to create
MACRO-80 ftacro assembler source files. Source files are
created using a text editor, such as CP/M ED. The Utility
Software Package does not include a,text editor program.

Source files are assembled using the procedures described in
Chapter 4.

3.1 SOURCE FILE ORGANIZATION

File Organization

A MACRO-80 macro assembler source file
written in assembly language. The
must be an END statement. Matching
IF ••• ENDIF) must be entered in
Otherwise, lines may appear in any
designs.

is a series of lines
last line of the file
statements (such as

the proper sequence.
order the programmer

Statement Line Format

Source files input to the MACRO-80 macro assembler consist
of statement lines divided into parts or "fields."

BUF:

T
SYMBOL

DS

OPE~TION
lOOOH

r
ARGUMENT

;create a buffer

j
COMMENT

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-2

SYMBOL field contains one of the three types
(LABEL, PUBLIC, and EXTERNAL), followed
unless it is part of a SET, EQU,
statement.

of symbol
by a colon
or MACRO

OPERATION field contains an OPCODE, a PSEUDO-OP, a MACRO
name, or an expression.

ARGUMENT field contains expressions (specific values,
variables, register names, operands and operators) •

; COMMENT field contains comment text always preceded by a
semicolon.

All fields are optional. You may enter a completely blank
line.

Statement +ines may begin in any column. Multiple blanks or
tabs may be inserted between fields to improve readability,
but at least one space or tab is required between each
field.

Comments

A MACRO-80 macro assembler source line is basically an ~
Operation and its Argument. Therefore, the MACRO-80 macro
assembler requires that a COMMENT always begin with a
semicolon. A COMMENT ends with a carriage return.

For long comments, you may want to use the •COMMENT
pseudo-op to avoid entering a semicolon for every line. See
the File Related Pseudo-ops section of Chapter 4 for the
description of •COMMENT.

l

(
~: .
. .

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE

3.2 SYMBOLS

Page 3-3

Symbols are simply names for particular functions or values.
Symbol names are created and defined by the programmer.

Symbols in the Utility Software Package belong to one of
three types, according to their function. The three types
are LABEL, PUBLIC, and EXTERNAL. All three types of symbols
have a MODE attribute that corresponds to the segment of
memory the symbol represents. Refer to the section on modes
following the description of symbol types.

All three types
characteristics:

of symbols have the following

1. Symbols may be any length, but the number of
significant characters passed to the linker varies
with the type of symbol:

a. for LABELs, only the first sixteen characters
are significant.

b. for PUBLIC and EXTERNAL symbols, only the first
six characters are passed to the linker.

Additional characters are truncated internally.

2. A legal symbol name may contain the characters:

A-Z 0-9 $? @

3. A symbol may not start with a digit or an underline

4. When a symbol is read, lower case is translated
into upper case, so you may enter the name using
either case or both.

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE

LABEL:

Page 3-4

()
A LABEL:
program
value of
follows.

is a reference point for statements inside the
module where the label appears. A LABEL: sets the
the symbol LABEL to the address of the data that
For example, in the statement:

BUF: DS 1000H

BUF: equals the first address of the 1000H byte reserved
space.

Once a label is defined, the label can be used as an entry
in the ARGUMENT field. A statement with a label in its
argument loops to the statement line with that label in its
SYMBOL field, which is where the label is defined. The
label's definition replaces the label used in an ARGUMENT
field. For example,

STA BUF

sends the value in the accumulator to the area in memory
represented by the label BUF.

A LABEL may be any legal symbol name, up to 16 characters ()
long.

If you want to define a LABEL, it must be the first item in
the statement line. 8080 and Z80 labels must be followed
immediately by a single colon (no space), unless the LABEL
is part of a SET or EQU statement. (If two colons are
entered, the "label" becomes a PUBLIC symbol. See PUBLIC
Symbols below.)

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-5

CO \

o '

PUBLIC

A PUBLIC symbol is defined
difference is that a PUBLIC
reference point for statements
too.

A symbol is declared PUBLIC by:

much like a LABEL. The
symbol is available as a

in other program modules,

two colons (::) following the name. For example,

FOO: : RET

one of the pseduo-ops PUBLIC, ENTRY, or GLOBAL.
For example,

PUBLIC FOO

See the Data Definition and Symbol Definition
Pseudo-ops section in Chapt€r 4 for descriptions of
how to use these pseudo-ops.

The result of both methods of declaration is the same.
Therefore,

FOO: :

is equivalent to

RET

PUBLIC FOO
FOO: RET

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE

EXTERNAL

Page 3-6

An EXTERNAL symbol is defined outside the program module
where it appears. An EXTERNAL symbol is defined as a PUBLIC
symbol in another, separate program module. At link time
(when the LINK-BO Linking Loader is used), the EXTERNAL
symbol is given the value of the PUBLIC symbol in the other
program module. For example:

MODl

FOO: :

MOD2

DB 7 :PUBLIC FOO = 7

BYTE EXT FOO iEXTERNAL FOO

At link time, LINK-BO goes to the address of PUBLIC
FOO and uses the value there (7) for EXTERNAL FOO.

A symbol is declared EXTERNAL by:

1. two pound signs (##) following a reference to a
symbol name. For example:

CALL FOO##
(

declares FOO as a two-byte symbol defined in
another program module.

2. one of the pseudo-ops EXT, EXTRN, or EXTERNAL for
two-byte values. For example:

EXT FOO

declares FOO as a two-byte value defined in another
program module.

3. one of the pseudo-ops BYTE EXT, BYTE EXTERN, or
BYTE EXTERNAL for one-byte values. For example:

BYTE EXT FOO

declares FOO as a one-byte value defined in another
program module.

See the Symbol
Chapter 4 for
pseudo-ops.

Definition Pseudo-ops section in
descriptions of how to use these

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-7

As for PUBLIC symbols,
declaration is the same.

the result of both methods of
Therefore,

CALL

is equivalent to

FOO##

(:

EXT Faa
CALL Faa

MODES

A symbol is referenced by entering its name in the ARGUMENT
field of a statement line. When a symbol is referenced, the
value of the symbol (derived from the instruction which
defines the symbol) is substituted for the symbol name and
used in the operation.

The value of a symbol is evaluated according to its program
counter (PC) mode. The PC mode detetmines whether a section
of a program will be loaded into memory at addresses
predetermined by the proqrammer (absolute mode), or at
relative addresses that change depending on the size and
number of programs (code relative mode) and amount of data
(data relative mode), or at addr~sses shared with another
program module (COMMON mode). The default mode is Code
Relative.

Absolute Mode: Absolute mode assembles
code. A programmer selects Absolute mode
program code is to be loaded each time
addresses, regardless of what else is loaded

non-relocatable
when a block of

into specific
concurrently.

Data Relative Mode: Data Relative mode assembles code for a
section of a program that may change and therefore must be
loaded into RAM. This applies to program data areas
especially. Symbols in Data Relative Mode are relocatable.

Code Relative Mode: Code (program) Relative mode assembles
code for sections of programs that will not be changed and
therefore can be loaded into ROM/PROM. Symbols in Code
Relative Mode are relocatable.

COMMON Mode: COMMON mode assembles code that is loaded into
a defined common data area. This allows program modules to
share a block of memory and common values.

To change mode, use a PC mode pseudo-op in a statement line.
The PC mode pseudo-ops are:

ASEG
DSEG
CSEG
COM~ON

Absolute mode
Data Relative mode
Code Relative mode--default mode
COMMON mode

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-8

These pseudo-ops are described in detail in the PC Mode
Pseudo-ops section of Chapter 4. c-
This PC mode capability in the MACRO-80 macro assembler
allows a programmer to develop assembly language programs
that can be relocated. Many assembly language programmers
may have learned always to set an Origin statement at the
beginning of every module, subroutine, or main assembly
language program. Under MACRO-80 this mode of addressing is
called Absolute mode because hard (or actual addresses) are
specified beginning, especially, with the Origin statement.

MACRO-80 has two other, "relative" modes of addressing
available, called Code (Program) relative and Data relative.
Segments of code written in these two modes are relocatable.
Relocatable means the program module can be loaded starting
at any address in available memory, using the IP and ID
switches (special commands) in LINK-80.

(

(
,

, ' '\

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE

3.3 OPCODES AND PSEUDO-OPS

Page 3-9

("

Opcodes are the mnemonic names for the machine instructions.
Pseudo-ops are directions to the assembler, not the
microprocessor.

MACRO-80 supports two instruction sets: 8080 and Z80. A
list of the opcodes with brief summaries of their functions
is included as Appendix F. To program with the opcodes of
the different languages, the user must first enter the
pseudo-op which tells ,the assembler which language is being
coded. Refer to the Language Set Selection Pseudo-ops
section of Chapter 4 for details.

MACRO-80 also supports a large variety of pseudo-ops that
direct the assembler to perform many different functions.
The pseudo-ops are described extensively in Chapter 4 and
are summarized in Appendix E.

Opcodes and pseudo-ops are (usually) entered in the
OPERATION field of a statement line. (A program statement
line usually has an entry in the operation field, unless the
line is a Comment line only. The Operation field will be
the first field filled if no label is entered.) An
Operation may be any 8080 or Z80 mnemonic; or a MACRO-80
macro assembler pseudo-op, macro call, or expression.

The OPERATION field entries are evaluated in the following
order:

1. Macro call

2. Opcode/Pseudo-op

3. Expressions

MACRO-80 compares the entry in the OPERATION filed to an
internal list of macro names. If the entry is found, the
macro is expanded. If the entry is not a macro, MACRO-80
tries to evaluate the entry as an opcode. If the entry is
not an opcode, MACRO-80 tries to evaluate the entry as a
pseudo-ope If the entry is not a pseudo-op, M~CRO-~O

evaluates the entry as an expression. If an express10n 1S
entered as a statement line without an opcode, pseudo-op, or
macro name in front of it, the MACRO-80 macro assembler does
not return an error. Rather, the assembler assumes that a
define byte pseudo-op belongs in front of the expression and
assembles the line.

Because of the order of evaluation, a macro name that is the
same as an opcode prevents you from using the opcode again,
except as a macro call. For example, if you give a block of
macro code the name ADD in your program, you cannot use ADD
as an opcode in that program.

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE

3.4 ARGUMENTS: EXPRESSIONS

Page 3-10

(
Arguments for the opcodes and pseudo~ops are usually called
expressions because they resemble mathematical expressions,
such as 5+4*3. The parts of an expression are called
operands (5, 4, and 3 in the mathematical expression) and
operators (the + and * are examples). Expressions may
contain one operand or more than one. One operand
expressions are probably the form most commonly used as
arguments. If the expression contains more than one
operand, the operands are related to each other by an
operator. For example:

5+4 6-3 7*2 8/7 9>8

and so on. In MACRO-80, operands are numeric values
represented by numbers, characters, symbols, or 8080
opcodes. Operators may be arithmetic or logical.

You are prohably familiar with the various forms of
expressions that can be used as arguments, but you may want
to review the details given below for characteristics unique
to MACRO-80.

The following sections define the forms of operands and
operators MACRO-80 supports.

3.4.1 Operands

Operands may be numbers, characters, symbols, or 8080
opcodes.

Numbers

The default base for numbers is decimal. The base may be
changed by the .RADIX pseudo-ope Any base from 2 (binary)
to 16 (hexadecimal) may be selected. When the radix is
greater than 10, A-F are used for the digits following 9.
If the first digit of a number is not numeric, the number
must be preceded by a zero.

A number is always evaluated in the current radix unless one
of the following special notations is used:

(

nnnnB
nnnnD
nnnnO
nnnnH
X'nnnn'

Binary
Decimal
Octal
Hexadecimal
Hexadecimal

Numbers are l6-bit unsigned binary quantities. Overflow of
a number heyond two bytes (16 bits that is, 65535
decimal) is ignored, and the result is the low order 16
bits.

(

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE

ASCII Strings

Page 3-11

A string is composed of zero or more characters delimited by
quotation marks. Either single (I) or double (") quotation
marks may be used as string delimiters. When a quoted
string is entered as an argument, the values of the
characters are stored in memory one after the other. For
example:

DB "ABC"

stores the ASCII value of A at the first address, B at the
second address, and C at the third.

The delimiter quotes may be used as characters if
appear twice for every character occurrence desired.
example, tpe statement

"I am ""great"" today"

stores the string

I am "great" today

they
For

If no characters are placed between the quotation marks, the
string is evaluated as a null string.

Character Constants

Like strings, character constants are composed of zero, one,
or two ASCII characters, delimited by quotation marks.
Either single or double quotation marks may be used as
delimiters. The delimiter quotes may be used as characters
if they appear twice for every character occurrence desired.

The differences are:

1. A character constant is only zero, one, or two
characters.

2. Quoted characters are a character constant only if
the expression has more than one operand. If the
characters are entered as the only operand, they
are. evaluated and stored as a string. For example:

'A'+l is a character constant, but

'AI is a string.

3. The value of a character constant is calculated,
and the result is stored with the low-byte in the
first address and the high-byte in the second. For
example:

PROGR&~ING WITH THE UTILITY SOFTWARE PACKAGE Page 3-12

3. The value of a character constant is calculated,
and the result is stored with the low-byte in the
first address and the high~byte in the second. For
example:

DW 'AB'+O

evaluates to 4142H and stores 42 in the first
address and 41 in the second.

(

A character constant comprised of one character has
value the ASCII value of that character. That is,
order byte of the value is zero, and the low order
the ASCII value of the character. For example, the
the constant 'A' is 4lH.

as its
the high
byte is
value of

A character constant comprised of two characters has as its
value the ASCII value of the first character in the high
order byte and the ASCII value of the second character in
the low order byte. For example, the value of the character
constant 'AB'+O is 4lH*256+42H+O.

The ASCII decimal and hexadecimal values for characters are
listed in Appendix C.

Svrnbols in Expressions
(

A symbol may be used as
symbol is evaluated,
symbol. The Operation
value.

an operand in an expression. The
and the value is substituted for the
is performed using the symbol's

The benefit of using symbols as operands is that the
programmer need not remember the exact value each time it is
needed; rather, the symbol name can be used. The name is
usually easier to remember, especially if the symbol name is
made mnemonic. The use of symbols as operands becomes more
attractive, of course, as the number of symbols in a program
increases.

Rules Governing the Use of EXTERNALS in expressions:

1. EXTERNAL symbols may be used in expressions with
the following operators only:

+ * / MOD HIGH LOW

2. If an EXTERNAL symbol is used in an expression, the
result of the expression is always external.

MODE Rules affecting SYMBOLS in expressions:

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-13

(. ~

(

(

1. In any operation, except AND, OR, or XOR, the
operands may be any mode.

2. For AND, OR, XOR, SHL, and SHR, both operands must
be absolute and internal.

3. When an expression contains an Absolute operand and
an operand in another mode, the result of the
expression will be in the other (not Absolute)
mode.

4. When subtracting two operands in different modes,
the result will be in Absolute mode. Otherwise,
the result will be in the mode of the operands.

5. When adding a data relative symbol and a code
relative symbol, the result will be unknown, and
MACRO-80 passes the expression to LINK-80 as an
unknown, which LINK-80 resolves.

Current Program Counter Symbol

One additional symbol for the Argument field only must be
noted: the current program counter symbol. The current
program counter is the address of the next instruction to be
assembled. The current program counter is often a
convenient reference point for calculating new addresses.
Instead of remembering or calculating the current program
address, the programmer uses a symbol that tells the
assembler to use the value of the current program address.

The current program counter symbol is $.

8080 Opcodes as Operands

8080 opcodes are valid one-byte operands in 8080 mode only.
During assembly, the opcode is evaluated to its hexadecimal
value.

To use 8080 opcodes as operands, first set the .8080
pseudo-ope See the Language Set Selection Pseudo-ops
section of Chapter 4 for a description of how to use the
.8080 pseudo-op.

Only the first byte is a valid operand. Use parentheses to
direct the assembler to generate one byte for opcodes that
normally generate more than one. For example:

PROGRAMMING WITH THE UTILITY SOFTI~ARE PACKAGE Page 3-14

MVI
ADI
MVI
CPI
ACI
MVI

A, (JMP)
(CPI)
B, (RNZ)
(INX H)
(LXI B)

C,MOV A,B

(

The assembler returns an error if more than one byte is
included in the operand (inside the parentheses) -- such as
(CPI 5), (LXI B,LABELl), or (JMP LABEL2).

Opcodes that generate one byte normally may be used as
operands without being enclosed in parentheses.

3.4.2 Operators

MACRO-SO allows both arithmetic and logical operators.
Operators which return true or false conditions return true
if the result is any non-zero value and false if the result
is zero.

The following arithmetic and logical operators are allowed
in expressions.

(

Operator

NUL

TYPE

Definition

Returns true if the argument (a parameter) is
null. The remainder of the line after NUL is
taken as the argument to NUL. The
conditional

IF NUL <argument>

is false if the first character of the
argument is anything other than a semicolon
or carriage return. Note that IPB and IFNB
perform the same functions but are simpler to
use. (Refer to the Conditional Assembly
Facility section in Chapter 4.)

The TYPE operator returns a byte that
describes two characteristics of its
argument: 1) the mode, and 2) whether it is
External or not. The argument to TYPE may be
any expression (string, numeric, logical).
If the expression is invalid, TYPE returns
zero.

The byte that is returned is configured as

(

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE

follows:

The lower two bits are the mode.
lower two bits are:

o the mode is Absolute
1 the mode is Program Relative
2 the mode is Data Relative
3 the mode is Common Relative

Page 3-15

If the

(

The high bit (BOH) is the External bit. If
the high bit is on, the expression contains
an External. If the high bit is off, the
expression is local (not External).

The Defined bit is 20H. This bit is on if
the expression is locally defined, and it is
off if the expression is undefined or
external. If neither bit is on, the
expression is invalid.

TYPE is usually used inside macros, where an
argument type may need to be tested to make a
decision regarding program flow: for
example, when conditional assembly is
involved.

EXAMPLE:

FOO MACRO X
LOCAL Z

Z SET TYPE X
IF Z•..

TYPE tests the mode and type of
on the evaluation of X, the
beginning with IF Z..• may be
omitted.

X. Depending
block 'of code
assembled or

LOW

HIGH

*

/

MOD

Isolates the low order 8 bits of an absolute
l6-bit value.

Isolates the high order B bits of an absolute
l6-bit value.

Multiply

Divide

Modulo. Divide the left operand by the right
operand and return the value of the remainder
(modulo) .

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-16

SHR

SHL

Shift Right. SHR is followed by an integer
which specifies the number of bit positions
the value is to be right shifted.

Shift Left. SHL is followed by an integer
which specifies the number of bit positions
the value is to be left shifted.

(

- (Unary Minus) Indicates that following value is negative,
as in a negative integer.

+

EQ

NE

LT

LE

GT

GE

NOT

AND

OR

Add

Subtract the right operand from the left
operand.

Equal. Returns true if the operands equal
each other.

Not Equal. Returns true if the operands are
not equal to each other.

Less Than. Returns true if the left operand
is less than the right operand.

Less than or Equal. Returns true if the left
operand is less than or equal to the right
operand.

Greater Than. Returns true if the left
operand is greater than the right operand.

Greater than or Equal. Returns true if the
left operand is greater than or equal to the
right operand.

Logical NOT. Returns true if left operand is
true and right is false or if right is true
and left is false. Returns false if both are
true or both are false.

Logical AND. Returns true if both operators
a~e true. Returns false if either operator
is false or if both are false. Both operands
must be absolute values.

Logical OR. Returns true if either operator
is true or if both are true. Returns false
if both operators are false~ Both operands
must be absolute values.

(

l

PROGRAMMING WITH THE UTILITY SOFTWARE PACKAGE Page 3-17

XOR Exclusive OR. Returns true if either
operator is true and the other is false.
Returns false if both operators are true or
if both operators are false. Both o?erands
must be absolute values.

(

The order of precedence for the operators is:

NUL, TYPE

LOW, HIGH

* I, MOD, SHR, SHL,

Unary Minus

+, -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

Subexpressions
an expression
may be altered
expression you

involving operators of higher precedence than
are computed first. The order of precedence

by using parentheses around portions of an
wish to give higher precedence.

All operators except +, -, *, and I must be separated from
their operands by at least one space.

(

The byte isolation operators (HIGH and LOW)
high- or low-order 8 bits of a 16-bit value.

isolate the

(,

C'..

CHAPTER 4

4.1

4.2

4.3

Contents

Assembler Features

Single-Function Pseudo-ops 4-1
Instruction Set Selection 4-2
Data Definition and Symbol Definition 4-4
PC Mode 4-13
File Related 4-20
Listing 4-27

Format Control 4-28
General Listing Control 4-31
Conditional Listing Control 4-33
Macro Expansion Listing Control 4-34
CREF Listing Control 4-35

Macro Facility 4-36
Macro Definition 4-37

Calling a Macro 4-38
Repeat Pseudo-ops 4-40
Termination 4-44
Macro Symbol 4-45
Special Macro Operators 4-46

Conditional Assembly Facility 4-48

(

CHAPTER 4

ASSEMBLER FEATURES

The MACRO-80 macro assembler features three general
facilities: single-function pseudo-ops, a macro facility,
and a conditional assembly facility.

4.1 SINGLE-FUNCTION PSEUDO-OPS

Single-function pseudo-ops involve only their own statement
line and direct the assembler to perform only one function.
(Macros and conditionals involve more than one line of code,
so they may be thought of as block pseudo-ops.)

The Single-Function Pseudo-ops are divided into five types:
Instruction Set Selection, Data Definition and Symbol
Definition, PC Mode, File Related, and Listing Control.

ASSEMBLER FEATURES

INSTRUCTION SET SELECTION

Page 4-2

(

The default instruction set mode is 8080. If the correct
instruction set selection pseudo-op is not given, the
assembler will return fatal errors for opcodes that are not
valid for the current instruction set selection mode. That
is, .Z8D assembles Z8D opcodes only;- .8080 assembles 8080
opcodes only. Therefore, if you have written any assembly
language programs for Z80, you need to insert the .Z80
instruction set pseudo-op at the beginning of the program
file.

Note that all the pseudo-ops listed in this chapter will (
assemble in both instruction set modes.

L

ASSEMBLER FEATURES

.Z80

.Z80 takes no arguments.
assemble Z80 opcodes •

• 8080

.8080 takes no arguments.
to assemble 8080 opcodes.

Page 4-3

.Z80 directs MACRO-80 to

.8080 directs MACRO-SO
(default)

All opcodes entered following an Instruction Set
Selection pseudo-op will be assembled as that type
of code until a different Instruction Set Selection
pseudo-op is encountered.

If you enter an opcode not belonging to the
selected instruction set, MACRO-80 will return an
Objectionable Syntax error (letter 0).

ASSEMBLER FEATURES

DATA DEFINITION AND SYMBOL DEFINITION

Page 4-4

(

All of the data definition and symbol definition pseudo-ops
are supported in both instruction set modes. (The one
notable exception is SET, which is illegal in .zao mode.
For your information, The following notation has been placed
before the pseudo-op syntax to indicate which microprocessor
the pseudo-op is usually associated with:

* indicates a zao pseudo-op

No asterisk indicates an Intel aoao pseudo-op (

l.

(\

ASSEMBLER FEATURES

Define Bvte

Page 4-5

*

*

DB <exp>[,<exp> ...]
DEFB <exp>[,<exp> ..•]
DB <string>[<string> .•.]
DEFM <string>[,<string> •..]

The arguments to DB are either expressions or
strings. The arguments to DEFB are expressions.
The arguments to DEFM are strings. Strings must be
enclosed in quotes, either single or double.

NOTE: DB is
explanation
pseudo-ops.

used throughout
to represent all

the following
the Define Byte

DB is used to store a value (string or numeric) in
a memory location, beginning with the current
location counter.

Expressions must evaluate to one byte. (If the
high byte of the result is a or 255, no error is
given; otherwise, an A error results.)

Strings of three or more characters may not be used
in expressions (i.e., they must be immediately
followed by a comma or the end of the line). The
characters in a 8080 or Z80 string are stored in
the order of appearance, each as a one-byte value
with the high order bit set to zero.

EXAMPLE:

DB 'AB'
DB 'AB' AND OFFH
DB 'ABC'

assembles as:

0000' 41 42 DB 'AB'
0002' 42 DB 'AB' AND OFFH
0003' 41 42 43 DB 'ABC'

ASSEMBLER FEATURES

Define Character

DC <string>

Page 4-6

(

DC stores the characters in <string> in successive
memory locations beginning with the current
location counter. As with DB, characters are
stored in order of appearance, each as a one-byte
value with the high order bit set to zero.
However, DC stores the last character of the string
with the high order bit set to one. An error will
result if the argument to DC is a null string.

EXAMPLE:

Faa:

assembles to:

0000' 41 42 C3 Faa:

DC

DC

"ABC"

"ABC"

c

l

ASSEMBLER FEATURES

(\ Define Space

DS <exp>[,<val>]
* DEFS <exp>[,<val>]

Page 4-7

The define space pseudo-ops reserve an area of
memory. The value of <exp> gives the number of
bytes to be reserved.

To initialize the reserved space, set <val> to the
value desired. If <val> is nul (that is, omitted),
the reserved space is left as is (uninitialized);
the reserved block of memory is not automatically
initialized to zeros. As an alternative to setting
<val> to zero, when you want the define space block
initialized to zeros, you may use the 1M switch at
assembly time. See the Switches section in Chapter
5, Running MACRO-SO, for a description of the 1M
switch.

All names used in <exp> must be previously defined
(i.e., all names known at that point on pass 1).
Otherwise, a V error is generated during pass 1,
and a U error may be generated during pass 2. If a
U error is not generated during pass 2, a phase
error will probably be generated because the define
space pseudo-op generated no code on pass 1.

EXAMPLE:

DS lOOH

reserves lOOH bytes of memory, uninitialized
(whatever values were in those bytes before the
program was loaded will still be there). Use the
1M switch at assembly time to initialized the lOOH
bytes to zero, if you want. Or, use the following
statement to initialize a reserved space to zero or
any other value:

DS lOOH,2

reserves lOOH bytes, each initialized to a value of
2.

l

uuuu· t'UU: DW .LLJ4H

Note: The bytes are shown on the listing in the
order entered, not the order stored. (

ASSEMBLER FEATURES

('., Equate

<name> EQU <exp>

Page 4-9

EQU assigns the value of <exp> to <name>. The
<name> may be a label, a symbol, or a variable, and
may be used subsequently in expressions. <name>
may not be followed by colon(s).

If <exp> is External, an error is generated. If
<name> already has a value other than <exp>, an M
error is generated.

If you will want to redefine <name> later in the
program, use the SET or ASET pseudo-op to define
<name> instead of EQU.

Contrast with SET.

EXAMPLE:

(

BUF EQU OF3H

ASSEMBLER FEATURES

External Symbol

EXT <name>[,<name> •••]
EXTRN <name>(,<name> ••.]

* EXTERNAL <name>(,<name> •••]
BYTE EXT <symbol>
BYTE EXTRN <symbol>
BYTE EXTERNAL <symbol>

Page 4-10

(

The External symbol pseudo-ops declare that the
name(s) in the list are External (i.e., defined in
a different module). If any item in the list
refers to a name that is defined in the current
proqram, an M error results. A reference to a name
where the name is followed immediately be two pound
signs (e.g., NAME##) also declares the name as
External.

Externals may evaluate to either one or
For all External symbol' names, only
characters are passed to the linker.
characters are truncated internally.

EXAMPLE:

two bytes.
the first 6
Additional

(
EXTRN ITRAN ;tranf init rtn

MACRO-80 will generate no code for this statement
when this module is assembled. When ITRAN is used
as an argument to a CALL statement, the CALL ITRAN
statement generates the code for CALL but a zero
value (0000*) for ITRAN. At link time, LINK-80
will search all modules loaded for a PUBLIC ITRAN
statement and use the definition of ITRAN found in
that module to define ITRAN in the CALL ITRAN
statement.

l

ASSEMBLER FEATURES

(,\ Public Symbol

ENTRY <name>[,<name> ..•]
GLOBAL <name>[,<name> .••]
PUBLIC <name>[,<name> •••]

Page 4-11

The Public symbol pseudo-ops declare each name in
the list as internal and therefore available for
use by this program and other programs to be loaded
concurrently and linked with LINK-80. All of the
names in the list must be defined in the current
program, or a U error results. An M error is
generated if the name is an External name or common
block name.

Only the first 6 characters of a Public symbol name
are passed to the linker. Additional characters
are truncated internally.

EXAMPLE:

PUBLIC ITRAN ;tranf init rtn

(
ITRAN: LD HL,PASSA ;store addr of

;reg pass area

l

MACRO-80 assembles the LD statement as usuall but
generates no code for the PUBLIC ITRAN statement.
When LINK-80 sees EXTRN ITRAN in another module, it
knows to search until it sees this PUBLIC ITRAN
statement. Then, LINK-80 links the value of ITRAN:
LD HL,PASSA statement to the CALL ITRAN statement
in the other module(s).

ASSEMBLER FEATURES

Set

Page 4-12

(

*
<name> SET <exp>
<name> DEFL <exp>
<name> ASET <exp>

(Not in .Z80 mode)

The Set pseudo-ops assign the value of <exp> to
<name>. The <name> may be a label, a symbol, or a
variable, and may be used subsequently in
expressions. <name> may not be followed by
colon(s). If <exp> is External, an error is
generated.

The SET pseudo-op may not be used in .Z80 mode
because SET is a Z80 opcode. Both ASET and DEFL
may be used in both instruction set modes.

Use one of the SET pseudo-ops instead of EQU to
define and redefine <name>s you may want to
redefine later. <name> may' be redefined with any
of the Set pseudo-ops, regardless of which
pseudo-op was used to define <name> originally (the
prohibition against SET in .Z80 mode still applies,
however).

Contrast with EQU.

EXAMPLE:

Faa ASET BAZ+IOOOH
.0

Whenever FOO is used as an expression (operand),
the ALDS assembler will evaluate BAZ+lOOOH and
substitute the value for FOO. Later, if you want
FOO to represent a different value, simply reenter
the FOO ASET statement with a different expression.

Faa ASET BAZ+lOOGH

Faa ASET 3000H

FOG DEFL 6CDEH

(

l

(\

ASSEMBLER FEATURES

PC MODE

Page 4-13

Many of the pseudo-ops operate on or from the current
location counter, also known as the program counter or PC.
The current PC is the address of the next byte to be
generated.

In MACRO-80, the PC has a mode, which gives symbols and
expressions their modes. (Refer again to the Overview in
Chapter 1 and the Symbols section in Chapter 3, if
necessary.) Each mode is given a segment of memory by

(
LINK-80 for the instructions assembled to each mode.

The four modes are Absolute, Data Relative, Code Relative,
and COMMON Relative.

If the PC mode is absolute, the PC is an absolute address.
If the PC mode is relative, the PC is a relative address and
may be considered an offset from the absolute address where
the beginning of that relative segment will be loaded by
LINK-80.

The PC mode pseudo-ops are used to specify in which PC mode
a segment of a program will be assembled.

l

ASSEMBLER FEATURES

Absolute Segment

ASEG

ASEG never has operands.
non-relocatable code.

ASEG

Page 4-14

generate~

(

ASEG sets the location counter to an absolute
segment (actual address) of memory. The ASEG will
default to 0, which could cause the module to write
over part of the operating system. We recommend
that each ASEG be followed with an ORG statement
set at 103H or higher.

(

(

ASSEMBLER FEATURES

Code Segment

CSEG

Page 4-15

CSEG never has an operand. Code assembled in Code
Relative mode can be loaded into ROM/PROM.

CSEG resets the location counter to the code
relative segment of memory. The location will be
that of the last CSEG (default is 0), unless an ORG
is done after the CSEG to change the location.

Note, however, that the ORG statement does not set
a hard (absolute) address under CSEG mode. An ORG
statement under CSEG causes the assembler to add
the number of bytes specified by the <exp> argument
in the ORG statement to the last CSEG address
loaded. If, for example, ORG 50 is given, MACRO-80
will add 50 bytes to the current CSEG location then
begin loading the CSEG. The clearing effect of the
ORG statement following CSEG (and DSEG as well) can
be used to give the module an offset. The
rationale for not allowing ORG to set an absolute
address for CSEG is to keep the CSEG relocatable.

To set an absolute address for the CSEG, use the /P
switch in LINK-80.

CSEG is the default mode of the assembler.
Assembly begins with a CSEG automatically executed,
and the location counter in the Code Relative mode,
pointing to location a in the Code Relative segment
of memory. All subsequent instructions will be
assembled into the Code Relative segment of memory
until an ASEG, DSEG, or COMMON pseudo-op is
executed. CSEG is then entered to return the
assembler to Code Relative mode, at which point the
location counter returns to the next free location
in the Code Relative segment.

ASSEMBLER FEATURES

Data Segment

DSEG

Page 4-16

(

The DSEG pseudo-op never has operands. DSEG
specifies segments of assembled relocatable code
that will later be loaded into RAM only.

DSEG sets the location counter to the Data Relative
segment of memory. The location of the data
relative counter will be that of the last DSEG
(default is 0), unless an ORG is done after the
DSEG to change the location.

Note, however, that the ORG statement does not set
a hard (absolute) address under DSEG mode. An ORG
statement under DSEG causes the assembler to add
the number of bytes specified by the <exp> argument
in the ORG statement to the last DSEG address
loaded. If, for example, ORG 50 is given, MACRO-80
will add 50 bytes to the last DSEG address loaded
then begin loading the DSEG. The clearing effect
of the ORG statement following DSEG (and CSEG as
well) can be used to give the module an offset.
The rationale for not allowing ORG to set an
absolute address for DSEG is to keep the DSEG (
relocatable.

To set an absolute address for the DSEG, use the ID
switch in LINK-80.

L

ASSEMBLER FEATURES Page 4-17

(\ Common Block

COMMON /<b1ock name>/

block name.
every COMMON

If <block
the block

The argument to COMMON is the common
COMMON creates a common data area for
block that is named in the program.
name> is omitted or consists of spaces,
is considered to be blank common.

(

COMMON statements are non-executable, storage
allocating statements. .COMMON assigns variables,
arrays, and data to a storage area called COMMON
storage. This allows various program modules to
share the same storage area. Statements entered
following the •COMMON statement are assembled to
the COMMON area under the <block name>. The length
of a COMMON area is the number of bytes required to
contain the variables, arrays, and data declared in
the COMMON block, which ends when another PC mode
pseudo-op is encountered. COMMON blocks of the
same name may be different lengths. If the lengths
differ, then the program module with the longest
COMMON block must be loaded first (that is, must be
the first module name given in the LINK-80 command
line; see Chapter 6 for the description of
LINK-80) .

COMMON sets the location counter to the selected
common block in memory. The location is always the
beginning of the area so that compatibility with
the FORTRAN COMMON statement is maintained.

EXAMPLE:

ANVIL
COMMON
EQU
DB
DW
DCI
CSEG

/DATABIN/
lOOH
OFFH
l234H
'FORGE'

ASSEMBLER FEATURES

Set Origin

ORG <exp>

Page 4-18

(

At any time, the value of a location counter may be
changed by use of ORG. Under the ASEG PC mode, the
location counter is set to the value of <exp>, and
the assembler assigns generated code starting with
that value. Under the CSEG, DSEG, and COMMON PC
modes, the location counter for the segment is
incremented by the value of <exp>, and the
assembler assigns generated code starting with the
value of that last segment address loaded plus the
value of <exp>. All names used in <exp> must be
known on pass 1, and the value must either be
Absolute or in the same area as the location
counter.

EXAMPLE:

DSEG
ORG 50

sets the Data Relative location counter to 50,
relative to the start of the Data Relative segment (
of memory. This means that the first SOH addresses
will be filled with o. This method provides
relocatability. The ORG <exp> statement does not
specify a fixed address in CSEG or DSEG mode;
rather, LINK-80 loads the segment at a flexible
address appropriate to the modules being loaded
together.

On the other hand, a program that begins with the
statements

ASEG
ORG SOOH

and is assembled entirely in Absolute mode will
always load beginning at 800H, unless the ORG
statement is changed in the source file. That is,
ORG <exp> following ASEG originates the segment at
a fixed (Le., absolute) address specified by
<exp>. However, the same program, assembled in
Code Relative mode with no ORG statement, may be
loaded at any specified address by appending the
/P:<address> switch to the LINK-SO command string.
(For details, see Section 6.3, Switches.)

l

ASSEMBLER FEATURES

(.~ Relocate

.PHASE <exp>

.DEPHASE

Page 4-19

.PHASE allows code to be located in one area, but
executed only at a different area with a start
address specified by <exp>. The <exp> must be an
absolute value. .DEPHASE is used to indicate the
end of the relocated block of code.

The PC mode within a .PHASE block is absolute, the
same as the mode of the <exp> in the .PHASE
statement. The code, however, is loaded in the
area in effect when the .PHASE statement is
encountered. The code within the block is later
moved to the address specified by <exp> for
execution.

EXAMPLE:

(• PHASE 100H
FOO: CALL BAZ

JMP ZOO
BAZ: RET

.DEPHASE
ZOO: JMP 5

assembles as:

. PHASE 100H
0100 CD 0106 FOO: CALL BAZ
0103 C3 0007' JMP ZOO
0106 C9 BAZ: RET

.DEPHASE
0007' C3 0005 ZOO: JMP 5

END

.PHASE DEPHASE blocks are a way to execute a
block of code at a specific absolute address.

ASSEMBLER FEATURES

FILE RELATED

Page 4-20

c

The file related pseudo-ops insert long comments
program, give the module a name, end the module,
other files into the current program.

in the
or move

(

l

(

ASSEMBLER FEATURES

Comment

.COMMENT <delim><text><delim>

Page 4-21

(

The first non-blank character encountered after
. COMMENT is taken as the delimiter. The <text>
following the delimiter becomes a comment block
which continues until the next occurrence of
<delimiter>.

Use the .COMMENT pseudo-op to make long comments.
It is not necessary to enter the semicolon to
indicate a COMMENT. Indeed, the main reason for
using . COMMENT is to override the need to begin
each comment line with a semicolon. During
assembly, .COM~ENT blocks are ignored and not
assembled.

EXAMPLE:

.COMMENT * any amount of text
entered here

* ireturn to normal assembly

ASSEMBLER FEATURES

End of Program

END [<exp>l

Page 4-22

(

The END statement specifies the end of the module.
If the END statement is not included, a %No END
statement warning error message results.

The <exp> may be a label, symbol, number, or any
other legal argument that LINK-80 can load as the
starting point into the first address to be loaded.
If <exp> is present, LINK-80 will place an 8080 JMP
instruction at OIOOH to the address of <exp>. If
<exp> is not present, then no start address is
passed to LINK-80 for that program, and execution
begins at the first module loaded. (Also, if <exp>
is not specified, the LINK-80 /G switch will not
work for the module.)

The <exp> tells LINK-80 that the program is a main
program. Without <exp>, LINK-80 takes assembly
language programs as subroutines. If you link only
assembly language programs and none contains an END
statement with <exp>, LINK-80 will ask for a main
program. If you link two or more programs with END
<exp> statements, LINK-80 cannot distinguish which (
should be the main program.

If you want to link two or more main programs,
the /G:Name or /E:Name switches in LINK-80
Section 6.2.2, Switches). The "Name" will be
<exp> of the END statement for the program you
to serve as the main program.

use
(see
the

want

If any high-level language program is loaded with
assembly language modules, LINK-80 takes the
high-level language program as the main program
automatically. Therefore, if you want an assembly
language module executed before the high-level
language program, use the /G:Name or /E:Name switch
in LINK-80 to set the assembly language module as
the beginning of the program.

As an alternative, we recommend that you place a
CALL or INCLUDE statement at the beginning of the
high-level language program, and call in the
assembly language program for execution prior to
execution of the high-level language program.

(\

ASSEMBLER FEATURES

Include

INCLUDE <filename>
$INCLUDE <filename>
MACLIB <filename>

All three pseudo-ops are synonomous.

Page 4-23

(

These Include pseudo-ops insert source code from an
alternate assembly language source file into the
current source file during assembly. Use of an
Include pseudo-op eliminates the need to repeat an
often-used sequence of statements in the current
source file.

The <filename> is any valid file specification for
the operating system. If the filename extension
and/or device designation are other than the
default, source filename specifications must
include them. The default filename extension for
source files is .MAC. The default device
designation is the currently logged drive or
device.

The included file is opened and assembled into the
current source file immediately following the
Include pseudo-op statement. When end-of-file is
reached, assembly resumes with the next statement
following Include pseudo-op.

Nested Includes are not allowed. If encountered,
they will result in an objectionable syntax error,
O.

The file specified in the operand field must exist.
If the file is not found, the error V (value error)
is returned, and the Include is ignored. The V
error is also returned if the Include filename
extension is not .MAC.

On a MACRO-80 listing, the
between the assembled code
each line assembled from an
Listing Control Pseudo-op
description of listing file

letter
and the

included
section

formats.

C is
source
file.

below

printed
line on
See the

for a

ASSEMBLER FEATURES

Name Module

Nl>.ME (' modname ')

Page 4-24

(

Name defines a
parentheses and
required. Only
significant in a

name for the module.
quotation marks around modname

the first six characters
module name.

The
are
are

A module name may also be defined
pseudo-op. In the absence of
TITLE pseudo-ops, the module name
the source filename.

with the TITLE
both the NAME and
is created from

(

ASSEMBLER FEATURES

Radix

.RADIX <exp>

Page 4-25

The <exp> in a .RADIX statement is always a decimal
numeric constant, regardless of the current radix.

The default input radix (or base) for all constants
is decimal. The .RADIX pseudo-op allows you to
change the input radix to any base in the range 2
to 16 •

• RADIX does not change the radix of the listing;
rather, it allows you to input numeric values in
the radix you choose without special notation.
(Values in other radixes still require the special
notations described in Section 3.4.1.) Values in
the generated code remain in hexadecimal radix.

EXAMPLE:

DEC:

(
BIN:

HEX:

OCT:

DECI:
HEXA:

assembles as:

DODO' 14 DEC:
0002
0001' IE BIN:
0010
0002' CF HEX:
0008
0003' 3B OCT:
OOOA
0004' 10 DECI:
ODDS' DC HEXA:

(

DB
.RADIX
DB
• RADIX
DB
.RADIX
DB
.RADIX
DB
DB

DB
.RADIX
DB
.RADIX
DB
. RADIX
DB
. RADIX
DB
DB

20
2
00011110
16
OCF
8
73
10
16
OCH

20
2
00011110
16
OCF
8
73
10
16
OCH

ASSEMBLER FEATURES

Request

.REQUEST <filename>[,<filename> ...]

Page 4-26

c
When you run LINK-80, .REQUEST sends a request to
the LINK-80 linking loader to search the filenames
in the list for undefined external symbols. If
LINK-80 finds any undefined external symbols
(external symbols for which a corresponding PUBLIC
symbol is not currently loaded), you will know that
you need to load one or more additional modules to
complete linking.

The filenames 'in the list should be in the form of
legal symbols. <filename> should not include a
filename extension or device designation. LINK-80
assumes the default extension (.REL) and the
currently loqged disk drive.

EXAMPLE:

. REQUEST SUBRI (

LINK-80 will search
which do not have
definitions declared
modules.

SUBRI for external
corresonding PUBLIC

among the currently

symbols
symbol
loaded

C··
. .

ASSEMBLER FEATURES

LISTING

Page 4-27

(

Listing pseudo-ops perform two general functions: format
control and listing control. Format control pseudo-ops
allow the programmer to insert page breaks and direct page
headings. Listing control pseudo-ops turn on and off the
listing of all or part of the assembled file.

ASSEMBLER FEATURES Page 4-28

Format Control

These pseudo-ops allow you to direct page breaks, titles,
and subtitles on your program listings.

Form Feed

* *EJECT [<exp>]
PAGE <exp>
$EJECT

The form feed pseudo-ops cause the assembler to
start a new output page. The assembler puts a form
feed character in the listing file at the end of
the page.

The value of <exp>, if included, becomes the new
page size (measured in lines per page) and must be
in the range 10 to 255. The default page size is
50 lines per page.

EXAMPLE:

*EJECT 58

(

(

The assembler causes the printer
page every time 58 lines of
printed.

to start a new
program have been

l

(

ASSEMBLER FEATURES

Title

TITLE <text>

Page 4-29

(

TITLE specifies a title to be listed on the first
line of each page. If more than one TITLE is
given, a Q error results. The first six characters
of the title are used as the module name, unless a
NAME pseudo-op is used. (If neither a TITLE nor a
NAME pseudo-op is used, the module name is created
from the source filename.)

EXAMPLE:

TITLE PROGI

The module name is now PROGI. The module may be
called by this name, which will be printed at the
top of every listing page.

ASSEMBLER FEATURES

Subtitle

SUBTTL <text>
$TITLE ('<text>')

Page 4-30

(

SUBTTL specifies a subtitle to be listed in each
page heading on the line after the title. The
<text> is truncated after 60 characters.

Any number of SUBTTLs may be given in a program.
Each time the assembler encounters SUBTTL, it
replaces the <text> from the previous SUBTTL with
the <text> from the most recently encountered
SUBTTL. To turn off SUBTTL for part of the output,
enter a SUBTTL with a null string for <text>.

EXAMPLE:

SUBTTL SPECIAL I/O ROUTINE

SUBTTL

The first SUBTTL causes the subtitle SPECIAL I/O
ROUTINE to be printed at the top of every page.
The second SUBTTL turns off subtitle (the subtitle
line on the listing is left blank).

(

l

ASSEMBLER FEATURES

C,\ General Listing Control

Page 4-31

(

.LIST

.XLIST
- List all lines with their code
- Suppress all listing

.LIST is the default condition. If you specify a
listing file in the command line, the file will be
listed.

When .XLIST is encountered in the source file,
source and object code will not be listed. .XLIST
remains in effect until a .LIST is encountered .

• XLIST overrides all other listing control
pseudo-ops. So, nothing will be listed, even if
another listing pseudo-op (other than .LIST) is
encountered.

EXAMPLE:

.XLIST

.LIST

;listing suspended heEe

;listing resumes here

ASSEMBLER FEATURES

Print At Terminal

.PRINTX <delim><text><delim>

Page 4-32

(

The first non-blank character encountered after
.PRINTX is the delimiter. The following text is
listed on the terminal during assembly until
another occurrence of the delimiter is encountered .
. PRINTX is useful for displaying progress through a
long assembly or for displaying the value of
conditional assembly switches •

• PRINTX will output on both passes. If only one
printout is desired, use the IFI or IF2 pseudo-op,
depending on which pass you want displayed. See
the Conditional pseudo-ops for IFI and IF2.

EXAMPLE:

.PRINTX *Assembly half done*

The assembler will send this message to the
terminal screen when encountered.

IFI
.PRINTX *Pass 1 done*
ENDIF

IF2
.PRINTX *Pass 2 done*
ENDIF

ipass 1 message only

ipass 2 message only

c

l

ASSEMBLER FEATURES Page 4-33

(\ Conditional Listing Control

The three conditional listing control pseudo-ops are used to
specify whether or not you wish statements contained within
a false conditional block to appear on the listing. See
also the description of the Ix switch in Chapter 5.

Suppress False Conditionals

.SFCOND

.SFCOND suppresses the portion of the listing that
contains conditional expressions that evaluate as
false.

List False Conditionals

.LFCOND

.LFCOND assures the listing
expressions that evaluate false.

Toggle False Listing Conditional

.TFCOND

of conditional

.TFCOND toggles the current setting. .TFCOND
operates independently from .LFCOND and .SFCOND .
• TFCOND toggles the default setting, which is set
by the presence or absence of the Ix switch in the
assembler command line. When IX is present,
.TFCOND will cause false conditionals to list.
When Ix is not given, .TFCOND will suppress false
conditionals.

l

ASSEMBLER FEATURES

Macro Expansion Listing Control

Page 4-34

(
Expansion listing pseudo-ops control the listing of lines
inside macro and repeat pseudo-op (REPT, IRP, IRPC) blocks,
and may be used only inside a macro or repeat block.

Exclude Non-code Macro Lines

.XALL

.XALL is the default •

• XALL lists source code and object code produced by
a macro, but source lines which do not generate
code are not listed.

List Macro Text

.LALL

.LALL lists
expansions,
code.

Suppress Macro Listing

.SALL

the complete macro text for all
including lines that do not generate (

.SALL suppresses listing of all text and object
code produced by macros.

l

ASSEMBLER FEATURES Page 4-35

(\ CREF Listing Control Pseudo-ops

You may want the option of generating a cross reference
listing for part of a program but not all of it. To control
the listing or suppressing of cross references, use the
cross reference listing control pseudo-ops, .CREF and
• XCREF , in the source file for MACRO-SO. These two
pseudo-ops may be entered at any point in the program in the
OPERATOR field. Like the other, listing control pseudo-ops,
.CREF and .XCREF support no ARGUMENTs.

Suppress Cross References

.XCREF

(

.XCREF turns of the .CREF (default) pseudo-ope

.XCREF remains in effect until MACRO-80 encounters

.CREF. Use .XCREF to suppress the creation of
cross references in selected portions of the file.
Because neither .CREF nor .XCREF takes effect until
the IC switch is set in the MACRO-SO command line,
there is no need to use .XCREF if you want the
usual List file (one without cross references) i
simply omit IC from the ALDS assembler command
line.

List Cross References

.CREF

.CREF is the default condition. Use .CREF to
restart the creation of a cross reference file
after using the .XCREF pseudo-ope .CREF remains in
effect until MACRO-SO encounters .XCREF. Note,
however, that .CREF has no effect until the IC
switch is set in the MACRO-80 command line.

ASSEMBLER FEATURES

4.2 MACRO FACILITY

Page 4-36

(
The macro facility allows you to write blocks of code which
can be repeated without recoding. The blocks of code begin
with either the macro definition pseudo-op or one of the
repetition pseudo-ops and end with the ENDM pseudo-ope All
of the macro pseudo-ops may be used inside a macro block.
In fact, nesting of macros is limited only by memory.

The macro facility of the MACRO-80 macro assembler includes
pseudo-ops for:

macro definition:
MACRO

repetitions:
REPT (repeat)
IRP (indefinite repeat)
IRPC (indefinite repeat character)

termination:
ENDM
EXITM

unique symbols within macro blocks:
LOCAL (

The macro facility also supports some
operators:

&.., ,

%

special macro

(

ASSEMBLER FEATURES

Macro Definition

<name> MACRO <dummy>[,<dummy> ..•]

ENDM

Page 4-37

I
"

The block of statements from the MACRO statement
line to the ENDM statement line comprises the body
of the macro, or the macro's definition.

<name> is like a LABEL and conforms to the rules
for forming symbols. Note that <name> may be any
length, but only the first 16 characters are passed
to the linker. After the macro has been defined,
<name> is used to invoke the macro.

A <dummy> is a place holder that is replaced by a
parameter in a one-for-one text substitution when
the MACRO block is used. Each <dummy> may be up to
32 characters long. The number of dummys is
limited only by the length of a line. If you
specify more than one dummy, they must be separated
by commas. MACRO-80 interprets all characters
between commas as a single dummy.

NOTE

A dummy is always recognized exclusively as
a dummy. Even if a register name (such as
A or B) is used as a dummy, it will be
replaced by a parameter during expansion.

A macro block is not assembled when it is
encountered. Rather, when you call a macro, the
assembler "expands" the macro call statement by
bringing in and assembling the appropriate macro
block.

If you want to use the TITLE, SUBTTL, or NAME
pseudo-ops for the portion of your program where a
macro block appears, you should be careful about
the form of the statement. If, for example, you
enter SUBTTL MACRO DEFINITIONS, MACRO-80 will
assemble the statement as a macro definition with
SUBTTL as the macro name and DEFINITIONS as the
dummy. To avoid this problem, alter the word MACRO
in some way: e.g., - MACRO, MACROS, and so on.

----- --

ASSEMBLER FEATURES

Calling a Macro

Page 4.... 38

(
To use a macro, enter a macro call statement:

<name> <parameter>[,<parameter> •••]

<name> is the <name> of the MACRO block. A
<parameter> replaces a <dummy> on a one-for-one
basis. The number of parameters is limited only by
the length of a line. If you enter more than one
parameter, they must be separated by commas. If
you place angle brackets around parameters
separated by commas, the assembler will pass all
the items inside the angle brackets as a single
parameter. For example:

Faa 1,2,3,4,5

passes five parameters to the macro, but:

Faa <1,2,3,4,5>

passes only one.

The number of parameters in the macro call
statement need not be the same as the number of
dummys in the MACRO definition. If there are more
parameters than dummys, the extras are ignored. If
there are fewer, the extra dummys will be made
null. The assembled code will include the macro
block after each macro call statement.

EXAMPLE:

c

EXCHNG MACRO
PUSH
PUSH
POP
POP
ENDM

X,Y
X
Y
X
Y

If you then enter as part of a program some code
and a macro call statement:

LDA
MOV
LDA
MOV
EXCHNG

2FH
HL,A
3FH
DE,A
HL,DE

L

ASSEMBLER FEATURES Page 4-39

(assembly generates the code:

0000' 3A 002F LDA 2FH
0003' 67 MOV HL,A
0004' 3A 003F LDA 3FH
0007' 57 MOV DE,A

EXCHNG HL,DE
0008' ES + PUSH HL
0009' D5 + PUSH DE
OOOA' El + POP HL
OOOB' Dl + POP DE

(

ASSEMBLER FEATURES

Repeat Pseudo-ops

Page 4-40

(

The pseudo-ops in this group allow the operations in a block
of code to be repeated for the number of times you specify.
The major differences between the Repeat pseudo-ops and
MACRO pseudo-op are:

1. MACRO gives the block a name by which to call in
the code wherever and whenever needed; the macro
block can be used in many different programs by
simply entering a macro call statement.

2. MACRO allows parameters to be passed to the MACRO (
block when a MACRO is called; hence, parameters
can be changed.

Repeat pseudo-op parameters must be assigned as a oart of
the code block. If the parameters are known in advance and
will not change, and if the repetition is to be performed
for every program execution, then Repeat pseudo-ops are
convenient. With the MACRO pseudo-op, you must call in the
MACRO each time it is needed.

Note that each Repeat pseudo-op must be matched with the
ENDM pseudo-op to terminate the repeat block.

ASSEMBLER FEATURES

C·. Repeat

REPT <exp>

ENDM

Page 4-41

Repeat block of statements between REPT and ENDM
<exp> times. <exp> is evaluated as a l6-bit
unsigned number. If <exp> contains an External
symbol or undefined operands, an error is
generated.

EXAMPLE:

X SET a
REPT 10 :generates DB 1 - DB 10

X SET X+l
DB X
ENDM

assembles as:

(0000 X SET a
REPT 10 :generates DB 1 - DB 10

X SET X+1
DB X
ENDM

0000' 01 + DB X
0001' 02 + DB X
0002' 03 + DB X
0003' 04 + DB X
0004' 05 + DB X
0005' 06 + DB X
0006' 07 + DB X
0007' 08 + DB X
0008' 09 + DB X
0009' OA + DB X

END

l

ASSEMBLER FEATURES

Indefinite Repeat

IRP <dummy>,<parameters inside angle brackets>

ENDM

Page 4-42

(
I

Parameters must be enclosed in angle brackets.
Parameters may be any legal symbol, string,
numeric, or character constant. The block of
statements is repeated for each parameter. Each
repetition substitutes the next parameter for every
occurrence of <dummy> in the block. If a parameter
is null (i.e., <», the block is processed once
with a null parameter.

EXAMPLE:

IRP
DB
ENDM

X,<1,2,3,4,5,6,7,8,9,10>
X

This example generates the same bytes (DB 1
10) as the REPT example.

DB (

When IRP is used inside a MACRO definition block,
angle brackets around parameters in the macro call
statement are removed before the parameters are
passed to the macro block. An example, which
generates the same code as above, illustrates the
removal of one level of brackets from the
parameters:

Faa MACRO
IRP
DB
ENDM
ENDM

X
Y,<X>
Y

When the macro call statement

Faa <1,2,3,4,5,6,7,8,9,10>

is assembled, the macro expansion becomes:

IRP
DB
ENDM

Y,<1,2,3,4,5,6,7,8,9,10>
Y

1

The angle brackets around the parameters are
removed, and all items are passed as a single
parameter.

ASSEMBLER FEATURES

Co Indefinite Repeat Character

IRPC <dummy>,<string>

ENDM

Page 4-43

The statements in the block are repeated once for
each character in the string. Each repetition
substitutes the next character in the string for
every occurrence of <dummy> in the block.

EXAMPLE:

IRPC
DB
ENDM

X,0123456789
X+l

This example generates the same code (DB 1 - DB 10)
as the two previous examples.

(

ASSEMBLER FEATURES

Termination

End Macro

ENDM

Page 4-44

(

ENDM tells the assembler that the MACRO or Repeat
block is ended.

Every MACRO, REPT, IRP, and IRPC must be terminated
with the ENDM pseudo-ope Otherwise, the
'Unterminated REPT/IRP/IRPC/MACRO' message is
generated at the end of each pass. An unmatched
ENDM causes an 0 error.

If vou wish to be able to exit. -
repeat block before expansion
EXITM.

Exit Macro

from a MACRO or
is completed, use

EXITM

The EXITM pseudo-op is used inside a MACRO or
Repeat block to terminate an expansion when some
condition makes the remaining expansion unnecessary
or undesirable. Usually EXITM is used in
conjunction with a conditional pseudo-ope

When an EXITM is assembled, the expansion is exited
immediately. Any remaining expansion or repetition
is not generated. If the block containing the
EXITM is nested within another block, the outer
level continues to be expanded.

EXAMPLE:

(

FOO
Y

Y

MACRO
SET
REPT
SET
IFE
EXITM
ENDIF
DB
ENDM
ENDM

X
o
X
Y+l
Y-OFFH ;test Y
;if true, exit REPT

Y

ASSEMBLER FEATURES

(Macro Symbol

LOCAL <dummy>[,<dummy> .•.]

Page 4-45

The LOCAL pseudo-op is allowed only inside a MACRO
definition block. When LOCAL is executed, the
assembler creates a unique symbol for each <dummy>
and substitutes that symbol for each occurrence of
the <dummy> in the expansion. These unique symbols
are usually used to define a label within a macro,
thus eliminating multiple-defined labels on
successive expansions of the macro. The symbols
created by the assembler range from •• 0001 to
•• FFFF. Users should avoid the form •• nnnn for
their own symbols. A LOCAL statement must precede
all other types of statements in the macro
definition.

EXAMPLE:

(

FOO

A:
B:
C:
D:
E:

MACRO
LOCAL
DB
DB
DB
DB
DW
JMP
ENDM
Faa
END

NUM,Y
A,B,C,D,E
7
8
Y
Y+l
NUM+l
A

OCOOH,OBEH

generates the following code (notice that MACRO-80
has substituted LABEL names in the form .• nnnn for
the instances of the dummy symbols):

0000'
0001'
0002'
0003'
0004'
0006'

07
08
BE
BF
OCOl
C3 0000'

Faa

A:
B:
C:
D:
E:

+•. 0000:
+.. 0001:
+•. 0002:
+•. 0003:
+•. 0004:
+

MACRO
LOCAL
DB
DB
DB
DB
DW
JMP
ENDM
Faa
DB
DB
DB
DB
DW
JMP
END

NUM,Y
A,B,C,D,E
7
8
Y
Y+l
NUM+l
A

OCOOH,OBEH
7
8
OBEH
OBEH+l
OCOOH+l
•. 0000

ASSEMBLER FEATURES Page 4-46

Special Macro Operators

Several special operators can be used in a macro block to
select additional assembly functions.

(

& Ampersand concatenates text or symbols. (The & may
not be used in a macro call statement.) A dummy
parameter in a quoted string will not be
substituted in expansion unless preceded
immediately by &. To form a symbol from text and a
dummy, put & between them.

For example:

The call ERRGEN A will then generate:

ERRGEN
ERROR&X:

ERRORA:

MACRO
PUSH
MVI
JMP
ENDM

PUSH
MVI
JMP

X
B
B,'&X'
ERROR

B
B,'A'
ERROR

c

;; In a block operation, a comment preceded by two
semicolons is not saved as a part of the expansion
(i.e., it will not appear on the listing even under
.LALL) . A comment preceded by only one semicolon,
however, will be preserved and appear in the
expansion.

An exclamation point may be entered in an argument
to indicate that the next character is to be taken
literally. Therefore,!; is equivalent to <j>.

% The percent sign is used only in a macro argument
to convert the expression that follows it (usually
a symbol) to a number in the current radix (set by
the .RADIX pseudo-op). During macro expansion, the
number derived from converting the expression is
substituted for the dummy. Using the % special
operator allows a macro call by value. (Usually, a
macro call is a call by reference with the text of
the macro argument substituting exactly for the
dummy.)

L

ASSEMBLER FEATURES Page 4-47

('. The expression following the % must conform to the
same rules as expressions for the DS (Define Space)
pseudo-op. That is, a valid expression that
evaluates to an absolute (non-relocatable) constant
is required.

EXAMPLE:

MSG,N
* MSG,N *

100
200

<SYMI + SYM2 = >,%(SYMI + SYM2)

MACRO
.PRINTX

ENDM
EQU
EQU
PRINTE

PRINTE

SYMI
SYM2

Normally, the macro call statement would cause the
str ing (SY~11 + SYM2) to be substi tuted for the
dummy N. The result would be:

.PRINTX * SYMI + SYM2 = (SYMI + SYM2)

When the % is placed in front of the parameter, the
assembler generates:

.PRINTX * SYMI + SYM2 = 300 *

Each IFxxxx must have a matching ENDIF to terminate the
conditional. Each COND must have a matching ENDC to
terminate the conditional. Otherwise, an 'Unterminated
conditional' message is generated at the end of each pass.
An ENDIF without a matching IF or an ENDC without a matching (
COND causes a C error.

The assembler evaluates the conditional statement to TRUE
(which equals FFFFH, or -1, or any non-zero value), or to
FALSE (which equals OOOOH). The code in the conditional
block is assembled if the evaluation matches the condition
defined in the conditional statement. If the evaluation
does not match, the assembler either ignores the conditional
block completely or, if the conditional block contains the
optional ELSE statement, assembles only the ELSE portion.

Conditionals may be nested up to 255 levels. Any argument
to a conditional must be known on pass 1 to avoid V errors
and incorrect evaluation. For IF/IFT/COND and IFF/IFE the
expression must involve values which were previously
defined, and the expression must be Absolute. If the name
is defined after an IFDEF or IFNDEF, pass 1 considers the
name to be undefined, but it will be defined on pass 2.

Each conditional block may include the optional ELSE
pseudo-op, which allows alternate code to be generated when
the opposite condition exists. Only one ELSE is permitted
for a given IFxxxx/COND. An ELSE is always bound to the
most recent, open IF. A conditional with more than one ELSE
or an ELSE without a conditional will cause a C error.

- - -~ ~----------

c'

ASSEMBLER FEATURES

Conditional Pseudo-ops

Page 4-49

*

IF <exp>
IFT <exp>
COND <exp>

If <exp> evaluates to not-a, the statements within
the conditional block are assembled.

(

IFE <exp>
IFF <exp>

If <exp> evaluates to 0, the statements in the
conditional block are assembled.

IFl Pass 1 Conditional

If the assembler is in pass 1, the statements in
the conditional block are assembled.

IF2 Pass 2 Conditional

If the assembler is in pass 2, the statements in
the conditional block are assembled.

IFDEF <symbol>

If the <symbol> is defined or has been declared
External, the statements in the conditional block
are assembled.

IFNDEF <symbol>

If the <symbol> is not defined or not declared
External, the statements in the conditional block
are assembled.

IFB <arg>

The angle brackets around <arg> are required.

If the <arg> is blank (none given) or null (two
angle brackets with nothing in between, <», the
statements in the conditional block are assembled.

ASSEMBLER FEATURES Page 4-50

IFNB <arg>

The angle brackets around <arg> are required.

If <arg> is not blank, the statements in the
conditional block are assembled. Used for testing
for dummy parameters.

IFIDN <argl>,<arg2>

The angle brackets around <argl> and <arg2> are
required.

If the string <argl> is identical to the string
<arg2>, the statements in the conditional block are
assembled.

IFDIF <argl>,<arg2>

The angle brackets around <argl> and <arg2> are
required.

If the string <argl> is different from the string
<arg2>, the statements in the conditional block are
assembled.

ELSE

The ELSE pseudo-op allows you to generate alternate
code when the opposite condition exists. May be
used with any of the conditional pseudo-ops.

ENDIF
* ENDC

These pseudo-ops terminate conditional blocks. A
terminate pseudo-op must be given for every
conditional pseudo-op used. ENDIF must be matched
with an IFxxxx pseudo-ope ENDC must be matched
with the COND pseudo-ope

(

(

C··
,"

Chapter 5

5.1
5.2

5.3

5.4

Contents

Running MACRO-80

Invoking MACRO-805-2
MACRO-80 Command Line 5-2

Source 5-3
Object 5-4
List 5-5
Switches 5-6
Additional Command Line Entries 5-9

Filename Extensions 5-10
Device Designations 5-11
Device Designations as Filenames 5-12

MACRO-80 Listing File Formats 5-13
File Format 5-13
Symbol Table Format 5-14

Error Codes and Messages 5-15

(,.

(

CHAPTER 5

RUNNING MACRO-80

When you have completed creating the assembly language
source file, you are ready to assemble it. MACRO-80
assembles ~he source file statements, including expanding
macros and repeat pseudo-ops. The result of assembly will
be relocatable object code which is .ready to link and load
with LINK-80. The relocatable object code can be saved in a
disk file, which the assembler gives the filename extension
.REL. The assembled (REL) file is not an executable file.
The file will be executable only after it is processed
through LINK-80.

MACRO-80 resides in approximately 19K of memory and has an
assembly rate of over 1000 lines per minute. MACRO-80 runs
under the CP/M operating system.

MACRO-80 assembles your source file in two passes. During
pass 1, MACRO-80 evaluates the program statements,
calculates how much code it will generate, builds a symbol
table where all symbols are assigned values, and expands
macro call statements. During pass 2, MACRO-80 fills in the
symbol and expression values from the symbol table, again
expands macro call statements, and emits the relocatable
code. MACRO-80 checks the values of symbols, expressions,
and macros during both passes. If a value during pass 2 is
different from the value during pass 1, MACRO-80 returns a
phase error code.

Before MACRO-SO can be run, the diskette which contains
MACRO-80 must be inserted in the appropriate disk drive.
The diskette on which you created the source file must also
be in a disk drive.

RUNNING MACRO-SO

5.1 INVOKING M~CRO-SO

To invoke MACRO-SO, enter:

MSO

Page 5-2

(

The program file MSO.COM will be loaded. MACRO-SO will
display an asterisk (*) to indicate that the assembler is
ready to accept a command line.

5.2 MACRO-SO COMMAND LINE

The command line for MACRO-SO consists of four fields,
labeled:

Object,List=Source/Switch

The command line may be entered on its own line, or it may
be entered at the same time as the MSO command. (If MSO and
the command line are entered on one line, MACRO-SO will not
return the asterisk prompt.) Entering the command line on
its own line allows single drive configurations to use
MACRO-SO. In addition, by entering MSO and the command line
separately, you are able to perform another assembly without (
reinvokinq MACRO-SO. When assembly is finished, MACRO-SO
will return the asterisk (*) prompt and wait for another
command line. To exit MACRO-SO when you have entered M80
and the command line separately, type <CTRL-C>.

If you are performing only one assembly, entering the
command line on the same line as MSO is convenient; it
requires less typing and allows the assembly operation to be
part of a SUBMIT command. When you enter MSO and the
command line together, MACRO-SO exits automatically to the
operating system.

NOTE

If you enter MSO and the
command line separately, you
must enter the command line in
upper case only. If you do
not, MACRO-SO will return a
?Command Error message. If
you enter MSO and the command
line on one line, the entries
may be in either upper or
lower case (or mixed) because
CP/M converts all entries to
upper case before p~ssing the
entries.

l

c·

RUNNING MACRO-SO

Source (=filename)

Page 5-3

(

To assemble your source program, you must enter at least an
equal sign (=) and the source filename.

The =filename indicates which source file you want to
assemble. If the source file disk is not in the currently
logged drive, you must include the drive designation as part
of the filename. If the source filename is entered without
an extension, MACRO-SO assumes that the extension is .MAC.
If the extension is not .MAC, you must include the extension
as part of the filename. For other possibilities for
drive/device designations and filename extensions, see the
Additional Command Line Entries section, below.)

The Source entry is the only entry required besides MSO.

The simplest command is:

MSO =Source

This command directs MACRO-SO to assemble the source file
and save the result in a relocatable object file (called a
REL file) with the same name as the source file. If the
source file is NEIL.MAC, the command line:

MSO =NEIL

generates an assembled file named NEIL.REL.

An additional option is to enter only a comma
left of the equal sign. When MACRO-SO sees a
first entry after the MSO entry, it suppresses
files (Object and List). The command line

M80 ,=NEIL

(,) to the
comma as the
all output

causes MACRO-80 to assemble the file NEIL.MAC, but no output
files are created. Programmers use this command line to
check syntax in the source program before saving the
assembled program. Because no files are generated, the
assembly is completed faster and errors are known sooner.

RUNNING MACRO-SO

Object (filename)

Page 5-4

(
An Object entry is always optional. However, certain
circumstances will compel you to make some entry for the
Object.

The Object file saves the assembled program in a disk file.
LINK-SO uses the Object file to create an executable
program. If both Object and List entries are omitted from a
command line (as in =Source), MACRO-SO will generate an
Object file with the same filename as the Source, but with
the default extension .REL.

If you want your Object file to have a name different from
the source file, you must enter a filename in the Object
field. MACRO-SO will still append the filename extension
.REL, unless you also enter an extension.

Also, if you want both a List file and a REL file generated,
you must enter a filename for the Object, even if you want
the REL file named after the source file. If you enter a
filename for the List but omit the Object, no REL file will
be generated. Programmers douse this feature for checking
the program for errors before final assembly. The program
listing aids debugging.

The name for the Object file may be the same as the source
filename or any other legal filename you choose. Since it
is practical to have all files which relate to a program
carry some mutual indication of their relationship, most
often you will want to give your object file the same name
as your source file.

(

RUNNING MACRO-80 Page 5-5

(

(

List (,filename)

A List entry is always optional. The comma is required in
front of all List entries. If you want a List file, enter a
,filename for the List. (There is an alternative to this
rule. See the Switches section below for discussion of the
/L switch.)

MACRO-80 appends the default extension .PRN to the List file
unless you specify a different extension in the List entry.

The command line:

MSO ,NEIL=NEIL

assembles the file NEIL. MAC (source file) and creates the
List file NEIL.PRN. An Object (REL) file is not created.

The name may be the same as the source filename or any other
legal filename you choose. Since it is practical to have
all files which relate to a program carry some mutual
indication of their relationship, most often you will want
to give your listing file the same name as your source file.

Avoid entering only a comma for the List after entering a
filename for the Object. For example:

MSO NEIL,=NEIL

MACRO-80 will probably ignore the comma and assemble the
source file into a REL file. It is possible that MACRO-SO
might return a COMMAND ERROR message.

If you enter only a comma for the List and nothing for the
Object, MACRO-SO ~ill assemble the source file, but will
generate no output files. This command

MSO ,=Source

allows you to check the source program for syntax errors
before saving the assembled program in a disk file. While
MACRO-SO always checks for errors, this command form
provides much faster assembly because the output files do
not have to be created.

At the end of assembly, MACRO-SO will print the message:

[xx] [No] Fatal errors [,xx warnings]

This message reports the number of fatal errors and warning
errors encountered in the program. The message is listed at
the end of every assembly on the terminal screen and in the
listing file. When the message a~p~ars, the assembler has
finished. When the message No Fatal Errors appears, the
assembly is complete and successful.

RUNNING MACRO-80 Page 5-6

Switches (/Switch)

You can command MACRO-80 to perform some additional
functions besides assembling and creating object and listing
files. These additional commands are given to MACRO-80 as
entries at the end of the command line. A Switch entry
directs MACRO-80 to "switch on" some additional or alternate
function; hence, these entries are called switches.
Switches are letters preceded by slash marks (/). Any
number of switches may be entered, but each switch must be
preceded by a slash. For example:

M80 ,=NEIL/L/R

The available switches for MACRO-80 are:

(,

Switch

/0

Action

Octal listing. MACRO-80 generates List
addresses in octal radix.

file

/H Hexadecimal listing. MACRO-80 generates List file
addresses in hexadecimal. This is the default.

/R Force generation of an Object file
name as the source file. May be
giving a filename in the Object
command line.

with the same
used instead of
field of the

(

This switch is convenient when you want a REL file
but forgot to enter a filename in the Object field
and entered a comma and filename or a comma only
in the List field. (Remember: if no filenames or
comma is entered before the equal sign, a REL file
is generated.) Thus, if you enter

M80 ,NEIL=NEIL
or M80 ,=NEIL

then decide, before pressing <ENTER>, that you
want a REL file, simply add /R. The command line
would then be:

M80 ,NEIL=NEIL/R
or M80 ,=NEIL/R

RUNNING MACRO-SO Page 5-7

c'

IL

IC

Force generation of a listing file with the same
name as the source file. May be used instead of
giving a filename in the List field of the command
line.

This switch is convenient when you want a List
file but forgot to enter a filename in the List
field. If you enter the command line:

M80 =NEIL
or M80 ,=NEIL
or M80 NEIL=NEIL

then decide, before pressing <ENTER>, that you do
want a List file, sim?ly add IL. The command
would then be:

M80 =NEIL/L
or M80 ,=NEIL/L
or MSO NEIL=NEIL/L

Causes MACRO-SO to generate a special List file
(with the same name as the Source file) for use
with CREF-80 Cross Reference Facility. If you
want to use CREF-80, you must assemble your file
with this switch set. See Chapter 8, CREF-80
Cross Reference Facility, for further details.

IZ Directs MACRO-80 to assemble Z80 opcodes. If your
source file contains Z80 opcodes and if you do not
include the .ZSO pseudo-op in your- source file,
then you must use the IZ switch at assembly time
so that MACRO-80 will assemble the z80 opcodes.

II Directs MACRO-80 to assemble 8080 opcodes. If
your source file contains 8080 opcodes and if you
do not include the .8080 pseudo-op in your- source
file, then you must use the II switch at assembly
time so that MACRO-80 will assemble the 8080
opcodes. (Default)

IP Each IP allocates an extra 256 bytes of stack
space for use during assembly. Use IP if stack
overflow errors occur during assembly. Otherwise,
IP is not needed.

RUNNING MACRO-80 Page 5-8

1M The 1M switch initializes Block data areas. If
you want the area that is defined by the DS
(Define Space) pseudo-op initialized to zeros,
then you should use the 1M switch in the command
line. Otherwise, the space is not guaranteed to
contain zeros. That is, DS does not automatically
initialize the space to zeros, in which case you
may not know what is stored in the DS space or how
the program will be affected.

(

IX The IX switch sets the default and current setting
to suppress the listing of false conditionals.
Absence of IX in the command line sets the default
and current setting to list conditional blocks
which evaluate false. IX is often used in
conjunction with the conditional listing pseudo-op
.TFCOND. Refer to the Listing Pseudo-ops section
in Chapter 4 for details.

(

RUNNING MACRO-80 Page 5-9

c·
Additional Command Line Entries

Each command line field supports two additional types of
entries--filename extensions and device designations. These
two types of entries are actually part of a "file
specification." A file specification includes the device
where a file is located, the name of the file, and the
filename extension.

Usually, filename extensions and device designations are
handled by defaults--the MACRO-80 program "inserts" these
entries if their positions are left blank in a command line.
The default assignments in no way prevent you from entering
either filename extensions or device designations, including
entries that match the default entries. The programmer may
enter or omit these additional entries in any combination.

The forma~ for a file specification under MACRO-80 is:

dev:filename.ext

where: dev: is a 1-3 letter device designation followed by
a (required) colon.

filename is a 1-8 letter filename .

. ext is a 1-3 character filename extension preceded
by a (required) period.

RUNNING MACRO-SO Page 5-10

Filename Extensions (.ext)

To distinguish between Source file, Object file, and List
file, MACRO-SO appends an extension to each filename.
Filename extensions are three-letter mnemonics appended to
the filename with a period (.) between the filename and the
extension. The extension which MACRO-SO appends reflects
the type of file. Since the extensions are supplied by
MACRO-SO, they are called default extensions. The default
extensions which MACRO-SO supplies are:

(

.REL

.PRN

.COM

Relocatable object file
Listing file
Absolute (executable object) file

Also, MACRO-SO assumes that, if no filename extension is
entered, a source file carries the filename extension .MAC.

You may supply your own extensions, if you find this
necessary or desirable. The disadvantage is that whenever
you call the file, you must always remember to include your
extension. Also, you must remember what type of file it
is--relocatable, source, absolute, etc. The advantage of
allowing MACRO-SO to assign default extensions is that you
always have a mnemonic indication of the type of file, and
you can call the filename without appending the extension, (
in most cases.

L

--~-------

(

RUNNING MACRO-SO

Device Designations (dev:)

Each of the fields in a command line
also may include a device designation.

Page 5-11

(except Invocation)

(

When a device designation is specified in the Source field,
the designation tells MACRO-80 where to find the source
file. When a device designation is specified in the Object
or List fields, the designation tells MACRO-80 where to
output the object or list file. If the device designation
is omitted from any of these fields, MACRO-SO assumes
(defaults to) the currently logged drive. Thus, any time
the device designation is the currently logged drive or
device, the device designation need not be specified.

It is important to include device designations if several
devices or drives will be used during an assembly. For
example, ~f your ALDS diskette is in drive A and your
program diskette is in drive B, and you want your REL file
output to drive B, you need to give .the command line:

MSO =B:NEIL

When the REL file is output, the currently logged drive is
drive B. (However, when MACRO-SO is finished, drive A will
be the currently logged drive again.) In contrast, if you
saved your source program on the MACRO-SO diskette in drive
A and want the REL file output to a diskette in drive B,
then you need to enter the command line:

M80 B:=A:NEIL

As a rule of thumb, if you are not
include the device designation
designation), enter a designation;
to get the right files in the right

sure if you need to
(especially the drive

it is the one sure way
places.

The available device designations for MACRO-SO are:

l

A:, B:, C:, ...
LST:
TTY:
HSR:

Disk drives
Line Printer
Terminal Screen or Keyboard
High Speed Reader

RUNNING MACRO-80 Page 5-12

Device Designations as Filenames

As an option, you may enter a device designation only in the
command line fields in place of a filename. The use of this
option gives various results depending on which device is
specified and in which field the device is specified. For
example:

M80 ,TTY:=TTY:

allows you to assemble a line immediately on input to check
for syntax or other errors. A modification of this command
(that is, M80 ,LST:=TTY:), provides the same result but
printed on a line printer instead of the terminal screen.

If you use either of these commands (,TTY:=TTY: or
,LST:=TTY:), your first entry should be an END statement.
You need to put the assembler into pass 2 before it will
emit the code. If you simply start entering statement lines
without first entering END, you will receive no response
until an END statement is entered. Then you will have to
reenter all your statements before you see any code
generated.

(

The following table illustrates the results of the various
choices. The table is meant to indicate the possibilities (
rather than provide an exhaustive list of the combinations.

dev: Object ,List =Source

A: , B: , write file write file N/A
C: , D: to drive to drive (a filename

specified specified must be
specified)

HSR: N/A N/A reads source
(inpu-t only) (input only) program from

high-speed
reader

LST: N/A writes N/A
(unreadable listing to (output only)
file format) line printer

TTY: N/A "writes" "reads" source
(unreadable listing to program from
file format) screen keyboard

Figure 5.1: Effects of Device Designations without Filenames

L

only when a .PAGE pseudo-op is encountered in the
source file, or whenever the current page size has
been filled.

SUBTTL text is the text supplied with
pseudo-op, if .SUBTTL was included
file. If no .SUBTTL was given in the
this space is left blank.

the . SUBTTL
in the source
source file,

A blank line follows the header data.
listing file begins on the next line.

The format of a listing line is:

The text of the

[error] ####m xx xxxxm[w] text

(

where: error represents a one-letter error code. An error
code is printed only if the line contains an error.
Otherwise, the space is left blank.

represents the location counter. The number is
a--4~digit hexadecimal number or a 6-digit octal
number. The radix of the location counter number is
determined by the use of the /0 or /H switch in the
MACRO-80 command line Switch field. If no radix
switch was given, the default radix is hexadecimal
(4-digit) .

RUNNING MACRO-80 Page 5-14

m represents the PC mode indicator character.
possible symbols are:

The
(

n

<space>

*

Code Relative
Data Relative
COMMON Relative
Absolute
External

xx and xxxx represent the assembled code. xx
represents a one-byte value. One-byte values are
always followed immediately by a space. xxx x
represents a two-byte value, with the high-order
byte printed first (this is the opposite of the
order in which they are stored). Two-byte values
are followed by one of the mode indicators discussed
above (indicated by the second m) .

[w] represents a line in the MACRO-80 file that came
from another file through an INCLUDE pseudo-op; or
a line that is part of an expansion JMACRO, REPT,
IRP, IRPC). For lines from an INCLUDE statement, a
C is printed following the assembled code; for
lines in an expansion, a plus sign (+) is printed
following the assembled code. Otherwise, this space
is blank.

text represents the rest of the line, including
labels, operations, arguments, and comments.

Symbol Table Format

The symbol table listing page follows the same header data
format as the file line pages. However, instead of a page
number, the symbol table page shows PAGE S.

Then, in a symbol table listing, all macro names in a
program are listed alphabetically. Next, all symbols are
listed, also alphabetically. A tab follows each symbol,
then the value of the symbol is printed. Each symbol value
is followed by one of the following characters:

(

I

U

C

*
<space>

PUBLIC symbol

Undefined symbol

COMMON block name. The value shown for the
COMMON block name is its length in bytes in
hexadecimal or octal radix.

External symbol

Absolute value

l

RUNNING MACRO-80 Page 5-15

(
"

Program relative value

Data relative value

COMMON relative value

5.4 ERROR CODES AND MESSAGES

Errors encountered during assembly cause MACRO-80 to return
either an error code or an error message. Error codes are
one-character flags printed in column one of the listing
file. If a listing file is not being printed on the
terminal screen, the lines containing errors will
nevertheless be printed on the terminal screen. Error
messages are printed at the end of the listing file, or, if
the listing file is not being displayed on the terminal
screen, any error messages will be displayed at the end of
the error code lines.

(ERROR
CODE MEANING

A Argument error.
The argument to a pseudo-op is not in correct
format or is out of range.

C Conditional nesting error.
ELSE without IF, ENDIF without IF, two ELSEs for
one IF, ENDC without CONDo

D Double defined symbol.
Reference to a symbol which has more than one
definition.

E External error.
Use of an External is illegal in
context. For example, FOO SET
B,2-NAME.

the
N~E

flagged
or LXI

M Multiply defined symbol.
The definition is for a symbol that already has a
definition.

N Number error.
An error in a number, usually a bad digit.
example, 8Q.

For

RUNNING MACRO-SO Page 5-16

o Bad opcode or objectionable syntax.
ENDM, LOCAL outside a block; SET, EQU, or MACRO
without a name; bad syntax in an opcode; or bad
syntax in an expression (for example, mismatched
parentheses, quotes, consecutive operators).

(

P Phase error.
The value of a label or EQU name is different
during pass 2 from its value during pass 1.

Q Questionable.
Usually, a line is not terminated properly.
example, MOV AX,BX,. This is a warning error.

For

R Relocation.
Illegal use of relocation in an expression, such as
abs-rel. Data, code, and COMMON areas are
relocatable.

U Undefined symbol.
A symbol referenced in an expression is not
defined. For some pseudo-ops, a V error is printed
for pass 1 then a U error for pass 2. Compare with
V error code definition below.

V Value error.
On pass 1 a pseudo-op which must have its value
known on pass 1 (for example, .RADIX, .PAGE, DS,
IF, IFE) has a value which is undefined. If the
symbol is defined later in the program, a U error
will not appear on the pass 2 listing.

(

ERROR MESSAGES

%No END statement

No END statement: either it is missing or it is
not parsed because it is in a false conditional,
unterminated IRP/IRPC/REPT block, or terminated
macro.

Unterminated conditional

At least one conditional is unterminated at the end
of the file.

Unterminated REPT/IRP/IRPC/MACRO

At least one block is unterminated. l

l

CHAPTER 6

6.1
6.2
6.2.1
6.2.2

6.3

Contents

LINK-80 Linking Loader

Invoking LINK-80 6-1
LINK-80 Commands 6-2

Filenames 6-3
Switches 6-4

Execute 6--6
Exit 6-8
Save 6-9
Address Setting
Library Search
Global Listing
Radix Setting
Special Code

Error Messages 6-19

6-11
6-15
6-16

6-17
6-18

CHAPTER 6

LINK-80 LINKING LOADER

The .REL files which MACRO-80 creates are
To make a REL file executable, you need to
REL file with the LINK-80 linking loader.
executable object file.

not executable.
load and link the
The result is an

(

Loading means physically placing the file in memory and
assigning absolute addresses to the code and data in place
of the relative addresses assigned by the assembler. This
is one of the required steps for converting a relocatable
(REL) file into an executable (COM) file.

Linking means that each loaded file (or module) that directs
program flow outside itself (by a CALL, an EXTERNAL symbol,
or an Include) will be "linked" to the module that contains
the corresponding code.

LINK-80 can also save the assembled-and-linked program as an
executable object program on disk in a file with the
extension .COM. Consequently, any time you wish to run your
program, you need only insert the disk which contains your
COM file into an appropriate disk drive and "call" your
program a simple process of typing in the filename you
used to save the program, followed by a carriage return.

6.1 INVOKING LINK-80

To invoke LINK-80, enter:

L80

The program file L80.COM will be loaded. LINK-80 will
display an asterisk (*) to indicate that the linking loader
is ready to accept a command. The REL file(s) you want
link-loaded must be available in a disk drive. If you have
only one drive, you will need to swap diskettes in the drive
at each step of the link-loading process.

LINK-SO LINKING LOADER

6.2 LINK-SO COMMANDS

LINK-SO commands are filenames and switches.

Page 6-2

(

You can enter your commands to LINK-SO one at a time; or,
you can enter all of your commands (including LSO) on one
line.

A command line has a flexible format, allowing you a number
of options for loading and linking files and for performing
other operations. The basic rule for LINK-SO commands is
that files are loaded in the order they are named, beginning
at the (default) address 103H under CP/M. Even though the
files will be loaded in the order entered, you do not have
to enter the files in the order of execution. LINK-SO
places a jump instruction at address 100H~102H which jumps
to the start address of the first instruction to be
executed, regardless of its location in memory.

LINK-SO can perform about eleven different tasks. Even
though you could use them all, you will rarely use more than
three or four at a time.

When you enter a command to LINK-SO, LINK-SO returns an
asterisk (*) prompt that tells you to enter another command. C
For example:

A>LSO<RETURN>
*/switch<RETURN>
*filename<RETURN>
*/switch<RETURN>
*filename/switch<RETURN>
*/E<RETURN> (to exit LINK-SO)

Note that all of the above lines may be entered as one line.
For example:

L80 /switch,filename/switch,filename/switch/E<RETURN>

This shows further the flexibility of the LINK-SO command
line.

Although entering each command on a separate line is slow
and tedious, the advantage is, especially if you are new to
a linking loader, that you know at all times what function
LINK-SO is performing.

l

C·'

LINK-SO LINKING LOADER

6.2.1 Filenames

Page 6-3

(

Files processed by LINK-SO are REL files. A filename
commands LINK-80 to load the named file (also called a
module). If any file has been loaded already, a filename
also commands LINK-SO to link the loaded files as required.

Normally each linking session requires at least two
filenames. One filename directs LINK-SO which REL file to
load and link; the other commands LINK-SO to save the
executable code in a file with the specified name.

If you enter only one filename during the link session,
either the COM file will not be saved (in which case you may
have wasted your time), or LINK-SO will return the error
message

?NOTHING LOADED

Note, however, that if you enter only one filename followed
by the /G switch, the COM file will not be saved, but the
program will execute as soon as LINK-SO is finished loading
and linking. (Refer to the description of the switches in
the next section.)

You may enter as many filenames as will fit on one line.
The files named may be REL files in different languages
(BASIC, COBOL, FORTRAN, or assembly) or runtime library REL
files for any of the high-level programming languages. (For
exact procedures for high-level language REL files, see the
product manual included with the high-level language
compiler.)

When LINK-SO is finished, the results are
named by the programmer in the command
followed by a /N -- see below, Section
LINK-SO gives this filename the extension

saved in the file
line (the filename
6.2.2, Switches).
.COM.

A filename command in LINK-SO actually means a file
specification. A file specification includes a device
designation, a filename, and a filename extension. The
format of a file specification is:

dev:filename.ext

LINK-SO defaults the dev: to the default or currently
logged disk drive. LINK-SO defaults the input filename
extension to .REL and the output filename extension to .COM.
You can alter the device designation to any applicable
output device supported by MACRO-SO and/or the filename
extension to any three characters by specifying a device or
a filename extension when you enter a filename command.

LINK-SO LINKING LOADER

6.2.2 Switches

Page 6-4

(
Switches command LINK-SO to perform functions besides
loading and linking. Switches are letters preceded by slash
marks (/). You can place as many switches as you need in a
single command line, but each switch letter must be preceded
by a slash mark (/). For example, if you want to link and
load a program named NEIL, save an image of it on diskette,
then execute the program, you need two filenames and two
switches, so you would enter the commands:

NEIL,NEIL/N/G<RETURN>

LINK-SO saves a memory image on diskette (the /N switch),
then runs the NEIL program (the /G switch).

Some switches can be entered by themselves (/E, /G, /R, /P,
/D, /U, /M, /0, /E). Some switches must be appended to the
filename they affect (/N, /S). Some switches work only if
other switches are also entered during the LINK-SO session
(/X, /Y). Some switches must precede any filenames you want
affected (/P, /D). Some switches command actions that are
deferred until the end of the LINK-SO session (/N, /X, /Y).
Some switches command actions that take place when entered
(/S, /R -- a filename entered without a switch appended acts (
this way, too). These "rules of behavior" should be kept in
mind when entering LINK-SO commands. See the descriptions
for each switch for full details of its action.

The chart below su~marizes the switches by function. Full
descriptions of the switches by function follow the chart.

BE CAREFUL: Do not confuse the LINK-SO switches with the
MACRO-SO switches.

LINK-80 LINKING LOADER Page 6-5

FUNCTION SWITCH ACTION

Execute IG

IG:Name

Execute .COM file then exit to
operating system.
Set .COM file start address
equal to value of Name, execute
.COM file, then exit to
operating system.

Exit IE
IE:Name

Exit to operating system.
Set .COM file start address
equal to value of Name, then
exit to operating system.

Save IN

IN:P

Save all previously loaded
programs and subroutines using
filename immediately preceding
IN.
Alternate- form of IN; save
only program area.

address for programs
If used with ID, IP

the program start.
address for data areac

Address
Setting

IP

ID

IR

Set start
and data.
sets only
Set start
only.
Reset LINK-80.

Library
Search

IS Search the library named
immediately preceding IS.

Global
Listing

IU

1M

List undefined globals.

List complete global reference
map.

Radix
Setting

10

IH

Octal radix.

Hexadecimal radix (default).

file for use
debugger.

IE switches.
file the

in Intel ASCII
Requires IN
"COM" file the

Save "COM" file
Hex format.
switch. Gives
extension .HEX.
Creates a special
with SID/ZSID
Requires IN and
Gives special
extension .SYM.

Ix

IY

Special
Code

Figure 6.1: Table of LINK-80 Switches

LINK-SO LINKING LOADER Page 6-6

At least two switches will probably be used in every linking
session. These switches belong to the first three functions
-- Execute, Exit, and Save.

EXECUTE

(

Switch

/G

Action

The /G switch causes LINK-SO to load the
filename(s) entered in the command line, to link
the program(s) together, then to execute the
link-loaded program. After the program run, your
computer returns to operating system command
level. For example,

LSD NEIL,NEIL/N/G

links NEIL.REL, saves the result in
named NEIL.COM, then exits to
system.

a disk file
the operating

Execution takes place as soon as the command line
has been interpreted. Just before execution
begins, LINK-SO prints three numbers and a BEGIN
EXECUTION message. These three numbers can be (
very useful to you in developing future assembly
language programs. The first number is the start
address of the program. The second number is the
address of the next available byte; that is, the
end address plus one byte. The third number is
the number of 256-byte pages taken up by the
program (the oifference between the start address
and the end address converted to 256-byte pages).

If you do not want to save the .COM file, use the
/G switch and enter only one filename on the
command line. For example:

LSD NEIL/G

But Remember: No COM file is created (since you
did not include /N). To run the program again,
you will have to run LINK-SO again.

LINK-SO LINKING LOADER Page 6-7

(
/G:<name> The /G:<name> switch performs exactly like the

plain /G switch but with one additional feature.
<name> is a global symbol which was defined
previously in one of the modules which is being
linked and loaded. When LINK-SO sees <name>, it
uses <name> as the start of the program and loads
the address of the line with <name> as its LABEL
into the jump instruction at lOOH-102H.

The value of this switch (and of /E:<name> below)
is the ability to tell LINK-80 where to start
execution when the assembled modules do not make
this clear. Usually this is no problem because
you link in a high-level language program (which
LINK-SO takes as the main program by default), or
you link only assembly language modules and only
one has an END <name> statement to signal LINK-SO
which assembly language program to execute first.
But if two or more assembly language modules
contain an END <name> statement, or if none of the
assembly language modules contain an END <name>
statement, then /G:<name> tells LINK-SO to use
this module as the starting point for execution.

(
Programmers who
language module
program should use
the beginning of
to cause execution
before execution
program.

want to execute an assembly
before a high-level language
a CALL or INCLUDE statement at
the high-level language program
of the assembly language module

of the high-level language

LINK-SO LINKING LOADER Page 6-S

EXIT

Switch Action
(

IE Use IE to link and load a program and perform some
other functions on the files (for example, save it
on a diskette) when you do not want to run the
program at this time. When LINK-SO has finished
the tasks, it will exit to the operating system.

(The IG switch is the only other switch which
exits LINK-SO.)

When linking is finished,
numbers: start address,
number of 256-byte pages.

LINK-SO outputs
next available

three
byte,

IE:<name> The IE:<name> switch performs exactly like the
plain IE switch but with one additional feature.
<name> is a global symbol which was defined
previously in one of the modules which is being
linked and loaded. When LINK-SO sees <name>, it
uses <name> as the start of the program and loads
the address of the line with <name> as the LABEL
into the jump instruction at lOOH-102H. ~

The value of this switch (and of IG:<name> above)
is the ability to tell LINK-SO where to start
execution when the assembled modules do not make
this clear. Usually this is no problem because
you link in a high-level language program (which
LINK-SO takes as the main program by default), or
you link only assembly language modules and only
one has an END <name> statement to signal LINK-SO
which assembly language program to execute first.
But if two or more assembly language modules
contain an END <name> statement, or if none of the
assembly language modules contain an END <name>
statement, then IE:<name> tells LINK-SO to use
this module as the starting point for execution.

Programmers who want to execute an assembly
language module before a high-level language
program should use a CALL or INCLUDE statement at
the beginning of the high-level language program
to cause this order of execution.

l

LINK-80 LINKING LOADER Page 6-9

(
SAVE

Switch Action

(

IN The IN switch causes the assembled-linked program
to be saved in a disk file. It is important that
a filename always be specified for the IN switch.
If you do not specify an extension, the default
extension for the saved file is .COM. The COM
filename will be the name the programmer appends
the IN switch to. The IN switch must immediately
follow the filename under which you wish to save
the results of the link-load session.

The IN switch does not take effect unless a IE or
IG switch follows it.

T-he most common error programmers make with the IN
switch is to forget that they must specify at. -
least two filenames; one as the file to be linked
and another one as the name for the file to be
saved. Therefore, at a minimum the command line
should include:

L80 NEIL,NEIL/N/G

The first filename NEIL is the file to be loaded
and linked; the second filename NEIL is the name
for the COM file that will save the result of the
link-loading session.

It is, of course, possible to specify filenames in
any order. For example:

L80 NEIL/N,ASMSUBl,ASMSUB2,BASPROG/G

Here LINK-80 will load and link the files BASPROG,
ASMSUBl, and ASMSUB2; then save the result in the
file named NEIL.

From these two examples, it is possible to see
that the filename followed by the IN save switch
is not loaded; it is only a specification for an
output file; you must also always name at least
one input file, too.

You will use this switch almost every time you
link a REL file because there is no other way to
save the result of a link-load session and because
not saving the result means you would have to link
load again to run your program.

Once saved on disk, you need only type the COM
filename at operating system command level to run
the program.

LINK-SO LINKING LOADER Page 6-10

/N:P By default, LINK-SO saves both the program and
data areas in the COM file. If you wish to save
only the program area to make your disk files
smaller, use the /N switch in the form /N:P. With
this switch set, only the program code will be
saved.

Two of these switches (/N plus either a /G or a /E type) are
all the switches required for most LINK-SO operations. Some
additional functions are available through the use of other
switches which allow programmers to manipulate the LINK-SO
processes in more detail. The switches which turn on these
additional functions are arranged in categories according to
type of function. The function of each category is defined
by the category name.

(

(

L

LINK-SO LINKING LOADER Page 6-11

ADDRESS SETTING(\
Switch

IP

Action'

The IP switch is used to set both the program and
data origin. If you do not enter the IP switch,
LINK-SO performs this task automatically, using a
default address for both program and data. (103H
for CP/M)

The format of the IP switch is:

IP:<address>,

The address value must be expressed in the current
radix. The default radix is hexadecimal.

The IP switch is designed to allow you
program (or code) segments ,at addresses
the default. The default value for the
is l03H.

to place
other than
IP switch

(
REMEMBER: The IP switch takes effect as soon as
it is seen, but it does not affect files already
loaded. So be sure to place the IP switch before
any files you want to load starting at the
specified address. The IP switch and ID switch,
when used, must be separated from the REL filename
by a comma. For example,

L80 IP:103,NEIL,NEIL/N/E

The IP switch affects primarily the CSEG code in
your assembly language program. If IP is given
but not ID, both data and program (CSEG and DSEG)
areas will be loaded starting at the IP:<address>.
DSEG (and any COMMON areas) will be loaded first.
If both IP and ID switches are given, IP sets the
start of the CSEG area only. Normally, unless
your programs are all CSEG, you will use IP and ID
together.

Note especially that ASEG areas are not affected
by the IP switch. So be careful to set the IP
address outside any ASEG areas unless you want the
program or data areas to write over the ASEG
areas.

You may enter more than one IP switch during a
single link session to place different program
(code) segments at addresses which are not end to
end. LINK-SO will automatically place one program
segment (CSEG) after the next. You can cause
space to be left between modules. However, some

LINK-SO LINKING LOADER Page 6-12

restrictions one the placement of modules apply:

1. Be sure that program areas do not overlay one
another. LINK-SO returns a warning error
message if they do.

c

2. Be sure that
by data or
200H, a DSEG
is illegal.
this case.

the program areas are not split
COMMON areas; that is, a CSEG at
at 300H, and another CSEG at 400H

LINK-SO returns a fatal error in

When the loading session is all done, LINK-SO
wants to see a segment of memory loaded with data
and COMMON and another segment loaded with program
code. ~he code segments may have gaps between the
modules as long as a data segment is not loaded
Qetween the start of the first code segment module
and the end of the last code segment module, and
vice versa. So, placing DSEG modules at
103H-115H, 150H-165H, 170H~175H, and CSEG modules
at 200H-250H, 300H-350H, 400H-450H is acceptable.
LINK and 80 will show Data between 103H and 175H
and Program between 200H and 450H.

Note that any gaps you leave may contain data or
program code from a previous program. LINK-80
does not initialize gaps to zero or null. This
could cause unpredictable results.

/D The /D switch sets the origin for DSEG and COMMON
areas. If you do not enter the /D switch, LINK-80
performs this task automatically, using a default
address for both data and program. (103H for
CP/M)

The format for the /D switch is:

/D:<address>,

The address for the /D switch must be in the
current radix. The default radix is hexadecimal.

The /D switch is designed to allow you to place
data and COMMON segments at addresses other than
the default. The default value for the /D switch
is 103H. The /D switch must be separated from the
REL filenames by a comma. For example,

L80 /D:I03,NEIL,NEIL/N/E

When the /P switch is used with the /D switch,
data and co'mmon areas load starting at the address
given with the /D switch. (The program will be

(

l

LINK-80 LINKING LOADER Page 6-13

the program origin given with
is the only occasion when the
is the start address for the

(\ loaded beginning at
the IP switch.) This
address given in IP:
actual program code.

REMEMBER: The ID switch takes effect as soon as
LINK-80 "sees" the switch, so the ID ~witch has no
effect on programs or data already loaded.
Therefore, it is important to place the ID switch
(as well as the IP switch) before the files you
want to load starting at the address specified.

You may enter more than one ID switch during a
single link session to place different program
(code) segments at addresses which are not end to
end. LINK-80 will automatically place one data
segment (DSEG) after the next. You can cause
space to be left between modules. However, some
restrictions on the placement of modules apply:

1. Be sure that data areas do
another. LINK-80 returns
message if they do.

not overlay one
a warning error

2. Be sure that the data areas are not split by
(program areas; that is, a DSEG at 200H, a

CSEG at 300H, and another DSEG at 400H is
illegal. LINK-80 returns a fatal error in
this case.

When the loading session is all done, LINK-80
wants to see a segment of memory loaded with data
and COMMON and another segment loaded with program
code. The data segments may have gaps between the
modules as long as a program segment is not loaded
between the start of the first data segment module
and the end of the last data segment module, and
vice versa. So, placing DSEG modules at
103H-115H, 150H-165H, l70H-175H, and CSEG modules
at 200H-250H, 300H-350H, 400H-450H is acceptable.
LINK and 80 will show Data between 103H and l75H
and Program between 200H and 450H.

Note that any gaps you leave may contain data or
program code from a previous program. LINK-BO
does not initialize gaps to zero or null. This
could cause unpredictable results.

l

LINK-80 LINKING LOADER

ADDITIONAL NOTE FOR /P AND /D SWITCHES

Page 6-14

(

If your program is too large for the loader, you
will sometimes be able to load it anyway if you
use /D and /P together. This way you will be able
to load programs and data of a larger combined
total. While LINK-80 is loading and linking, it
builds a table consisting of five bytes for each
program relative reference. By setting both /D
and /P, you eliminate the need for LINK-80 to
build this table, thus giving you some extra
memory to work with.

To set the two switches, look to the end of the
List file. Take the address you decided for the
/D switch (where you want the DSEG to start
loading), add the number for the total of data,
add that number to l03H, adq anqther lOOH+l, and
the result should be the /P: address for the
start of the program area. The /D switch should
be set at l03H or higher (D:I03).

/R The /R switch "resets" LINK-80 to its initialized
condition. LINK-80 scans the command line before
it begins the functions commanded. As soon as
LINK-80 sees the /R switch, all files loaded are
ignored, LINK-80 resets itself, and the asterisk
(*) prompt is returned showing that LINK-80 is
running and waiting for you to enter a command
line.

(

l

LINK-80 LINKING LOADER Page 6-15

LIBRARY SEARCH
(. \

Switch Action

(

/S The /S switch causes LINK-80 to search the file
named immediately prior to the switch for
routines, subroutines, definitions for globals,
and so on. In a command line, the filename with
the /S switch appended must be separated from the
rest of the command line by commas. For example:

Lao NEIL/N,MYLIB/S,NEIL/G

The /S switch is used to search library files
only, including a library you constructed, using
the LIB-SO Library Manager (see Chapter 8).

LINK-SO LINKING LOADER Page 6-16

GLOBAL LISTING

Switch Action c
/U The /u switch tells LINK-SO to list all undefined

globals. The /U works only in command lines that
do not include either a /G or a /E switch. Note
that if your program contains any undefined
globals, LINK-SO lists them automatically, unless
the command line also contains a /S (library
search) switch. In these cases, enter only the /U
switch, and the list of undefined globals will be
listed. Use CTRL-S to suspend the listing if you
want to study a portion of the list that would
scroll off the screen. Use CTRL-Q to restart the
listing.

1he various runtime libraries provide definitions
for the globals you need to run your high-level
language programs.

In addition to listing undefined globals, the /u
switch directs LINK-SO to list the origin, end,
and size of the program and data areas. These
areas are listed as one lump area unless both the (
/P and /D switches are set. If both /P and /D are
set, the start, end, and size of both areas are
listed separately.

/M The /M switch directs LINK-SO to list all globals,
both defined and undefined, on the screen. The
listing cannot be sent to a printer. In the
listing, defined globals are followed by their
values, and undefined globals are followed by an
asterisk (*).

In addition to listing all globals, the /M switch
directs LINK-SO to list the origin, end, and size
of the program and data areas. These areas are
listed as one lump area unless both the /P and /D
switches are set. If both /P and /D are set, the
start, end, and size of both areas are listed
separately.

LINK-SO LINKING LOADER Page 6-17

RADIX SETTING
(:

Switch Action

(

/0 The /0 switch sets the current radix to Octal. If
you have a reason to use octal values in your
program, give the /0 switch in the command line.
If you can think of no reason to switch to octal
radix, then there is no reason to use this switch.

/H The /H switch resets the current radix to
Hexadecimal. Hexadecimal is the default radix.
You do not need to give this switch in the command
line unless you previously gave the /0 switch and
now want to return to hexadecimal.

LINK-80 LINKING LOADER

SPECIAL CODE

Page 6-1'8

(
Switch

/X

/Y

Action

The /X switch saves the "COM" file in Intel ASCII
HEX format. The /x switch requires the /N switch
appended to the same filename as the IX. For
example:

L80 NEIL,NEIL/X/N/E

The file that is saved with the /X switch set is
given the filename extension .HEX.

The primary use of the /X switch is to prepare
programs to be burned into PROMs. The hex format
was originally developed to facilitate the
movement of programs from one machine to another.
The hex format provides more code checking than
obj ect code does. Also, a- HEX file can be edi ted
with some sophisticated line editors.

The /Y switch saves a file in a special format for
use with Digital Research's Symbolic Debuggers,
SID and ZSID. The /Y switch requires the /N and
the /E (not~) switches be given in the command
line. For example:

L80 NEIL,NEIL/Y/N/E

The file that is saved with the /Y switch set is
given the filename extension .SYM. A COM file
will also be saved. So the sample command line
above creates both NEIL.COM and NEIL.SYM.

The SYM file contains the names and addresses of
all globals, which allows you to use Digital
Research's Symbolic Debuggers SID and ZSID with
the SYM file.

(

l

(

LINK-SO LINKING LOADER

6.3 ERROR MESSAGES

Page 6-19

(

(

Errors encountered during the running of LINK-SO will return
messages, most preceded by either the symbol? or the
symbol %. No error codes are returned, so once you
understand the meaning of the message, error recognition
should be easy.

?No Start Address

The /G switch was issued, but no main program has
been loaded.

?Loading Error

The last file given for input was not a properly
formatted LINK-SO object file.

?Out of Memory

Not enough memory to load the module.

?Command Error

Unrecognizable LINK-SO command.

?<filename> Not Found

<filename>, as given in the command string, did not
exist.

?Start Symbol - <name> - Undefined

The /E:Name or /G:Name switch was given, but the
Name specified was not defined.

LINK-80 LINKING LOADER Page 6-20

?Nothing Loaded

A <filename>/S or /E or /G was given, but no object
file was loaded. That is, an attempt was made to
search a library, to exit LINK-80, or to execute a
program, when in fact nothing had been loaded. For
example:

TEST/N/E

Results in "?Nothing Loaded" because TEST/N names
TEST.COM, but does not load TEST.REL.

To load a file, enter the filename. To save a
file, enter a filename followed by the /N switch
and either a /E or a /G switch. For example, any
of the following sets of commands should work:

L80 NEIL,NEIL/N/E

or

L80
*NEIL
*NEIL/N/E

or

L80 NEIL/N,NEIL/E

?Can't Save Object File

A disk error occurred when the file was being
saved. Usually, this means that the disk is full
or that it is write-protected.

%2nd COMMON larger /XXXXXX/

When loading modules which include COMMON blocks,
LINK-80 takes the size of the first CO~MON block
loaded to set the amount of memory needed before
program code is loaded. If a subsequent module
contains a COMMON block larger than the first one
loaded, LINK-80 returns this error message. It
means that the first definition of the COMMON block
/XXXXXX/ encountered in the modules loaded was not
the largest block defined with that name. Reorder
module loading sequence or change COMMON block
definitions so that all blocks are the same size.

(

(

LINK-SO LINKING LOADER Page 6-21

('
%Mult. Def. Global YYYYYY

You have one global (PUBLIC) symbol name YYYYYY
with more than one definition. Usually, two or
more of the modules being loaded have declared the
same symbol name as PUBLIC.

%Overlaying Program Area ,Start = xxxx
,Public = <symbol name>
,External = <symbol name>

(xxxx)
(xxxx)

Usually this occurs when either ID or IP is set to
an address inside the area taken by LINK-SO. You
should reset the switch address above l02H. It may
also occur if you set addresses for programs loaded
after some initial programs were loaded and the
addresses were not set high enough. For example,
if MYPROG is larger than 147 bytes and you enter
the commands:

MYPROG,/P:1SO,SUBR1,FUNNY/N/E

you will receive the %Overlaying Program Area error
message.

%Overlaying Data Area ,Start = xxxx
,Public = <symbol name> (xxxx)
,External = <symbol name> (xxxx)

The ID and IP switches were set too close together.
For example, if ID was given a higher address than
IP but not high enough to be beyond the end of the
program area, when the program is loaded, the top
end will be laid over the data area. Or, if ID is
lower than IP, IP was not high enough to prevent
the beginning of the program from starting in the
area already loaded with data.

?Intersecting Program Area
or

?Intersecting Data Area

The program and data areas intersect and an address
or external chain entry is in this intersection.
The final value cannot be converted to a current
value since it is in the area intersection.

LINK-SO LINKING LOADER Page 6-22

Origin Above Loader Memory, Move Anyway (Y or N) ?
or

Origin Below Loader Memory, Move Anyway (Y or N) ?

This message will appear only after either the /E
or the /G switch command was given to LINK-SO. If
LINK-SO has not enough memory to load a module but
a /E or /G has not been entered, you will receive
the ?Out of Memory message.

LINK-SO can load modules only between its first
address in memory and the top of available memory.
If the program is too large for this space or if
you set a /D and/or /P switch too high for the size
of your program, LINK-SO runs out of memory and
returns the Origin Above Loader Memory message.

If you set a /D and/or /P switch below the first
aadress of LINK-SO (IOOH for CP/M), LINK-SO returns
the Origin Below Loader Memory message. This
prevents you from loading your program into memory
designated for the operating system.

(

If a Y<CR>
continue.
exit. In
the image

is given, LINK-SO will move the area and
If anything else is given, LINK-SO will

either case, if the /N switch was given,
will already have been saved. c

L

Chapter 7

Contents

CREF-80 Cross Reference Facility

7.1 Creating a CREF Listing 7-1
Creating a Cross Reference File 7-2
Generating a Cross Reference Listing 7-2

7.2 CREF Listing Control Pseudo-ops 7-3

(

CHAPTER 7

CREF-SO CROSS REFERENCE FACILITY

A cross reference facility processes a specially assembled
listing file to list the locations of all intermodule
references. and the locations of their definitions. The
result is a cross reference listing. This cross reference
listing can be used to aid debugging. your program.

The CREF-SO Cross Reference Facility allows a programmer to
process the cross reference file generated by MACRO-SO.
This cross reference file contains embedded control
characters, set up during MACRO-SO assembly. CREF-SO
interprets the control characters and generates a file that
lists cross references among variables.

CREF-SO produces a listing, resembling the PRN listing of
MACRO-SO, with two additional features:

1. Each source statement is numbered with a cross
reference number.

2. At the end of the listing, variable names appear in
alphabetic order. Each name is followed by the
line number where the variable is defined (flagged
with #) followed by the numbers of other lines
where the variable is referenced.

The CREF listing file replaces the MACRO-SO PRN List file
and receives the filename extension .LST instead of .PRN.

7.1 CREATING A CREF LISTING

l Creating a CREF listing involves two steps: (1) creating a
cross re fer ence file (. CRF) , and (2) gener a t ing a cross
reference listing (.LST). The first step occurs in the
MACRO-SO macro assembler; the second in the CREF-SO Cross
Reference Facility.

CREF-80 CROSS REFERENCE FACILITY Page 7-2

Creating ~ Cross Reference File

To create a cross reference file, set the /C switch in the
MACRO-80 command line. For example:

M80 =NEIL/C

This command line assembles the fileNEIL.MAC, generating
the output files NEIL.REL (object file) and NEIL.CRF (cross
reference file).

Generating ~ Cross Reference Listing

The cross reference listing is generated by running the .CRF
file through CREF-80.

To invoke the cross reference facility, enter:

CREF80

CREF-80 will return an asterisk (*) prompt.

(

To create the cross reference listing file, enter:

=filename (

where filename is the name of your .CRF file. For example:

CREF80 =NEIL

will generate a .LST file (NEIL.LST)
reference information.

containing the cross

This .LST file can be printed or sent to the terminal screen
using operating system commands. Additionally, CREF-80
supports the same output device designations as MACRO-80.
Simply enter the device designation in front of the
filename. For example:

CREF80 LST:=NEIL

sends the .LST listing to the printer only (no disk file is
generated) .

CREF80 TTY:=NEIL

sends the .LST listing to the CRT only
generated) .

(no disk file is

l

CREF-80 CROSS REFERENCE FACILITY Page 7-3

You will need to give a drive designation if you want the
.LST file saved elsewhere than the currently logged drive
(where the .CRF file resides). For example:

CREF80 B:=A:NEIL

saves NEIL.LST on drive B.

When finished, CREF-80 prompts with an asterisk. You may
enter another =filename, or exit from CREF-80 to the
operating system.

To exit CREF-80, enter:

CTRL-C

If you want the .LST file named differently from the default
(.CRF filename and extension .LST), enter the name in front
of the equal sign. For example:

CREF80 NEIL.CRL=NEIL
or CREF80 NEILCREF=NEIL

(, The former command line generates a
file named NEIL.CRL; the latter
NEILCREF.LST.

cross reference list
generates a file named

Look at the filename extensions to distinguish a cross
reference listing file from the listing file MACRO-80
normally generates. The listing file MACRO-80 normally
generates (without the IC switch set in the command line)
receives the default filename extension .PRN. The cross
reference listing file generated by CREF-80 receives the
default filename extension .LST.

7.2 CREF LISTING CONTROL PSEUDO-OPS

You may want the option of generating a cross reference
listing for part of a program but not all of it. To control
the listing or suppressing of cross references, use the
cross reference listing control pseudo-ops, .CREF and
.XCREF, in the source file for MACRO-80. These two
pseudo-ops may be entered at any point in the program in the
OPERATOR field. Like the other listing control pseudo-ops,
.CREF and .XCREF support no ARGUMENTs.

CREF-80 CROSS REFERENCE FACILITY Page 7-4

Pseudo-op

•CREF

. XCREF

Definition

Create cross references .
.CREF is the default condition. Use .CREF to
restart the creation of a cross reference file
after using the .XCREF pseudo-op. .CREF
remains in effect until MACRO-80 encounters
.XCREF. Note, however, that .CREF has no
effect until the IC switch is set in the
MACRO-80 command line.

Suppress cross references .
.XCREF turns off the .CREF (default) pseudo-op .
. XCREF remains in effect until MACRO-80
encounters .CREF. Use .XCREF to suppress the
creation of cross references in selected
portions of the file. Because neither .CREF
nor .XCREF takes effect until the IC switch is
set in the MACRO-80 command line, there is no
need to use .XCREF if you want the usual List
file (one without cross references); simply
omit IC from the MACRO-SO command line.

(

c

l

8-2
8-2

8-2

8-3
8-4

e-," "

l

CHAPTER 8

8.1

8.2

Contents

LIB-80 Library Manager

Sample LIB-80 Session
Building a Library
Listing a Library

LIB-80 Commands 8-3
Invoking LIB-80
Destination field
Source field 8-5

Additional Details
Switch field 8-8

About Source Modules 8-6

~. \

C
O •. .

CHAPTER 8

LIB-80 LIBRARY MANAGER

WARNING

,
Read this chapter carefully
and make a back-up copy of
your libraries before using
LIB-80. LIB-80 is very
powerful and thus can be very
destructive. It is easy to
destroy a library with LIB~80.

LIB-80 is designed as a runtime library manager for CP/M
versions of Microsoft FORTRAN-80 and COBOL-80. LIB-80 may
also be used to create your own library of assembly language
subroutines.

LIB-80 creates runtime libraries from assembly language
programs that are subroutines to COBOL, FORTRAN, and other
assembly language programs. The programs collected by
LIB-80 may be special modules created by the programmer or
modules from an existing library (FORLIB, for example).
With LIB-80, you can build specialized runtime libraries fo~

whatever execution requirements you design.

The value of building a library is that all the routines
needed to execute a program can be linked with it into an
executable object (COM) file by entering the libra~y name
followed by /5 in a LINK-80 command line. For example:

L80 MAIN,NEWLIB/S,NEIL/N/G

This is much more convenient than entering the necessary
subroutines individually, especially if there are many
modules. With a library file you can be sure all the
necessary modules will be linked into the COM file, plus
there is no danger of running out of space on the LINK-80

LIB-80 LIBRARY MANAGER Page 8-2

command line. Additionally, the library makes this special (
collection of subroutines available for easy linking into
any program.

8.1 SAMPLE LIB-80 SESSION

The two most common uses
building a library and
sample sessions illustrate
uses.

BUILDING A LIBRARY:

you will have for LIB-80 are
listing a library. The following
the basic commands for these two

A>LIB
*TRANLIB=SIN,COS,TAN,ATAN,ACOG
*EXP
*/E
A>

In this sample session, LIB invokes LIB-80, which
returns an asterisk (*) prompt. TRANLIB is the
name of the library being created.
SIN,COS,TAN,ATAN,ACOG are filenames to be (
concatenated into TRANLIB. EXP is another filename
to be concatenated into TRANLIB. (EXP could be
listed on the previous command line; this example
shows files entered singly and multiply.) /E causes
LIB-80 to rename TRANLIB.LIB to TRANLIB.REL then to
exit to CP/M.

LISTING A LIBRARY:

A>LIB
*TRANLIB.LIB/U
*TRANLIB.LIB/L

(List of symbols in TRANLIB.LIB)

*CTRL-C
A>

In this sample session, LIB invokes LIB-80.
TRANLIB.LIB/U tells LIB-80 to search ~RANLIB.LIB

for any intermodule references that would not be
defined during a single pass through the library

l

LIB-SO LIBRARY MANAGER Page S-3

(.

(

(that is, any "backward" referencing symbols).
TRANLIB.LIB/L directs LIB-SO to list the modules in
TRANLIB.LIB and the symbol definitions the modules
contain. CTRL-C exits to CP/M without destroying
any files.

WARNING

/E will destroy your current library if
there is no new library under construction.
This is a special danger to your FORTRAN
runtime library FORLIB.REL. IF YOU ARE
ONLY LISTING THE LIBRARY AND NOT REVISING
~ EXIT LIB-so USING--- CTRL-C.

8.2 LIB-SO COMMANDS

Invoking LIB-SO

To invoke LIB-SO, enter:

LIB

LIB-SO will return an asterisk (*) prompt, indicating ready
to accept commands. Each command in LIB-SO adds modules to
the library under construction.

Commands to LIB-80 consist of an optional Destination field,
a Source field, and an optional Switch field.

The format of a LIB-80 command is:

Destination=Source/Switch

Each field is described below. The general format for each
field is shown in parentheses after the field name.

LIB-SO LIBRARY MANAGER Page S-4

Destination field (filename=)

This field is optional. The equal sign is required if any
entry is made in this field.

Enter in this field the filename (and extension, if you
choose) for the library file you want to create.

If this field is omitted, LIB-SO defaults to the filename
FORLIB. The default filename extension is .REL.

WARNING

Do not confuse this default
filename FORLIB.LIB with
FORLIB.REL, the runtime library
supplied with FORTRAN-SO. These
two libraries will not be the
same unless you command LIB-SO
to 'copy all the files from the
FORTRAN runtime library to the
new library. Furthermore, when
you exit LIB-SO, the default
library name will be given the
filename extensjon .REL, which
means that it replaces the
FORLIB.REL supplied with
FORTRAN-SO. For this reason,
unless you want your FORTRAN-SO
runtime library destroyed, we
recommend emphatically that you
always specify a Destination
filename when creating a new
library.

(

(

LIB-80 LIBRARY MANAGER Page 8-5

(

(

Source field (filename<module»

Some entry is required in this field. All Source files must
be REL files.

Source field entries tell LIB-80 which files or parts of
files (modules) you want added to the destination library
file. You have two choices for entries:

1. Filename(s) only

2. Any combination of filename(s) and module name(s)

The following syntax rules apply:

1. If a command consists of filenames only, the
entries are separated by commas only. For example:

FILEI,FILE2,FILE3

2. If a command consists of filenames and module
names, the module names must be enclosed in angle
brackets «». Modules follow the filename where
they are found. Each filename<module name>
combination is separated from other command line
entries by commas. For example:

FILEI,FILE2<MODZ>,FILE3<MODR>,FILE4

3. If more than one module is named from the same
file, the module names, enclosed in angle brackets
«», must be separated from each other by commas.
For example:

FILEI,FILE2<MODZ,MODR>,FILE3

See Additional Details about Source Modules, option
2, below.

Files and modules are typically FORTRAN or COBOL subprograms
or main programs, or ALDS assembly language programs that
contain ENTRY, GLOBAL, or PUBLIC statements. (These
statements are called entry points.) LIB-BO recognizes a
module by its program name, which may be a filename, or a
name given by either the .TITLE or the NAME pseudo-op in
MACRO-BO. All Source files must be REL files.

LIB-BO concatenates REL files and modules of REL files;
C. that is, LIB-BO strings one file or module after the other.

LIB-SO LIBRARY MANAGER Page 8-6

So there is no difference between the command under syntax (
rule 2 above and

FILEl
FILE2<MODZ>
FILE3<MODR>
FILE4

Also, because the library file is built by concatenation, it
is important to order the modules so that all intermodule
references are "forward." That is, the module containing the
external reference should physically appear ahead of the
module containing the ENTRY point (the definition) .
Otherwise, when you direct LINK-SO to search the library,
LINK-SO may not satisfy all references on a single pass
through the library.

Additional Details about Source Modules

To extract modules from previous libraries and other REL
files, LIB-SO uses a powerful syntax to specify ranges of
modules within a REL file.

These ranges may be from one module to the entire file
which case no module specification is given).

(in (

of modules is,
command will be
specifying a

range
in a

when

The basic principle of specifying a
generally, that any module named
included. (There is an exception,
relative offset range--item 6, below.)

The options for specifying modules are:

1. One module only
Enter the module name. For example:

FILEl<MODZ>

includes only module MODZ of FILEI.

2. Several discontiguous modules from one file
Enter the module names separated by commas.
For example:

FILEl<MODZ,MODR,MODK>

includes modules MODZ, MODR, and MODK. Note
that these modules may be given in any order
you need them concantenated for a proper
one-pass search, regardless of their order in
the original file.

l

LIB-80 LIBRARY MANAGER Page 8-7

(3. From the first module through the named module
Enter two periods (..) and the name of the last
module to be included. For example:

FILEI< .. MODK>

includes all modules from the first module in
FILEI through module MODK.

4. From a named module through the last module
Enter the name of the module that starts
range followed by two periods (..).
example:

FILEI<MODR.. >

the
For

(

includes all the modules, beginning with module
MODR, through the last module in FILEI.

5. From one named module through another named module
Enter the name of the module that starts the
range followed by two periods (..) followed by
the name of the module that ends the range.
For example:

FILEI<MODZ .. MODK>

includes all modules, beginning with module
MODZ, through module MODK.

6. Relative offset range
Enter the module name followed by a + or - and
the number of modules to be included. + means
following the named module. - means preceding
the named module. The named module is not
included in the library. The offset number
must be an integer in the range I to 255. For
example:

FILEI<MODZ+2>

includes the two modules immediately following
module MODZ. While

FILEI<MODK-3>

includes the three
preceding module MODK.

modules immediately

LIB-80 LIBRARY ~~NAGER Page 8-8

Additionally, ranges and offsets may be used
together. For example:

FILEI<MODR+I •• MOOK-l>

includes all the modules between module MOOR
and module MODK (but neither MOOR nor MOOK is
included) .

7. All modules in a file
Enter the filename only. For example:

FILEI

includes the entire file (all modules in
FILEI) .

Switch field (/switch)

(

An entry in the Switch field commands LIB-80 to perform
additional functions. A Switch field entry is a letter
preceded by a slash mark (I). (

WARNING

IE will destroy your current
library if there is no new
library under construction.
This is a special danger to
your FORTRAN runtime library
FORLIB.REL because FORLIB is
the default filename used if
you do not specify a
destination filename.
Therefore, unless you want to
delete your complete FORTRAN
runtime library, give LIB-80 a
destination filename for the
new library. If you are only
listing the library and not
revising it, exit LIB-80 using
CTRL-C.

L

LIB-BO LIBRARY MANAGER Page 8-10

/0 Use /0 to set typeout mode to Octal radix. /0
will be given together with the /L switch, which
commands LIB-80 to list. REMEMBER: When switches
are given together, a slash must precede each
switch. For example:

NEWLIB/L/O

(

/H Use /H to set typeout mode to Hexadecimal radix.
Hexadecimal is the default radix.

(

l

Appendix A

Appendix B

Contents

Compatibility with Other Assemblers

The utility Software Package with TEKDOS

B.l
B.2
B.3
B.4

TEKDOS Command Files
MACRO-80 B-1
CREF-80B-2
LINK-80 B-2

B-1

Appendix C

Appendix D

Appendix E

Appendix F

ASCII Character Codes

Format of LINK Compatible Object Files

Table of ~~CRO-80 Pseudo-ops

Table of Opcodes

F.l
F.2

Z80 Opcodes
8080 Opcodes

F-l
F-3

"

Co

(

APPENDIX A

Compatibility with Other Assemblers

The $EJECT and $TITLE controls are provided for
compatability with Intel's ISIS assembler. The dollar sign
must appear in column 1 only if spaces or tabs separate the
dollar sign from the control word. The control word

$EJECT

is the same as the MACRO-80 PAGE pseudo-ope

The control word

$TITLE('text')

is the same as the MACRO-80 SUBTTL <text> pseudo-ope

The Intel operands PAGE and INPAGE generate Q errors when
used with the MACRO-80 CSEG or DSEG pseudo-ops. These
errors are warnings~ the assembler ignores the operands.

When MACRO-80 is invoked, the default for the origin is Code
Relative O. With the Intel ISIS assembler, the default is
Absolute O.

With MACRO-80, the dollar sign ($) is a defined constant
that indicates the value of the location counter at the
start of the statement. Other assemblers may use a decimal
point or an asterisk. Other constants are defined by
MACRO-80 to hqve the following values:

A=7
H=4

B=O
L=5

C=l
M=6

D=2
SP=6

E=3
PSW=6

(

APPENDIX B

The Utility Software Package with TEKDOS

The command formats for MACRO-80, LINK-80, and CREF-80
differ slightly under the TEKDOS operating system.

B.l TEKDOS COMMAND FILES

The files M80, L80, and C80 are actually TEKDOS command
files for the assembler, loader, and cross reference
programs, respectively. These command files set the
emulation mode to a and select the z-80 assembler processor
(see TEKDOS documentation), then execute the appropriate
program file. You will note that all of these command files
are set up to execute the Microsoft programs from drive #1.
LINK-80 will also look for the library on drive #1. If you
wish to execute any of this software from drive #0, th~

command file must be edited. Then, LINK-80 should be given
an explicit library search directive, such as MYLIB-S. See
the Switches section in Chapter 6, LINK-80 Linking Loader.

Filenames under TEKDOS do not use the Utility Software
Package default filename extensions.

B.2 MACRO-80

The MACRO-80 assembler accepts command lines only (the
invoke command, M80, and all filenames and switches must be
on one line). No prompt is displayed, and the interactive
commands (,TTY:=TTY: and ,LPT:=TTY:) are not accepted.
Commands have the same format as TEKDOS assembler commands:
that is, up to three filenames or device names plus optional
switches.

M80 [object] [list] source [switch [switch [.•.]]]

The object and list file entries are optio~al. These files
will not be created if the parameters are omitted. Any

Page B-2

error messages will still be displayed on the console. The (
available switches are described in Chapter 5 of this
manual. All command line entries may be delimited by commas
or spaces. If you do not want to request an object file,
you must enter a <space comma space> between the MaO entry
and the name of the list file. For example:

M80 , LIST SOURCE

B.3 CREF-80

The form of commands to CREF-80 is:

C80 list source

Both filenames are required. The source file is always the
name of a CREF-80 file created during assembly by the C
switch.

Example:

To create a CREF-80 file from the source TSTMAC using
MACRO-aD, enter:

Mao , TSTCRF TSTMAC C

To create a cross reference listing from the CREF-80 file
TSTCRF, enter:

caD TSTLST TSTCRF

B.4 LINK-aD

with TERDOS, the LINK-aD loader accepts interactive commands
only. Command lines are not supported.

When LINK-80 is invoked, and whenever it is waiting for
input, it will prompt with an asterisk. Commands are lists
of filenames and/or devices separated by commas or spaces
and optionally interspersed with switches. The input to
LINK-aD must be Hicrosoft relocatable object code (not the
same as TEKDOS loader format).

Switches to LINK-aD are delimited by hyphens under TEKDOS,
instead of slashes. All LINK-SO switches (as documented in
Chapter 6) are supported, except -G and -N, which are not
implemented at this time.

(

Page B-3

c EXAMPLE:

1. Assemble a MACRO-80 program named XTEST, creating
an object file called XREL and a listing file
called XLST:

>M80 XREL XLST XTEST

(

2. Load XTEST and save the loaded module:

>L80
*XREL-E
[04AD 22B8]
*DOS*ERROR 46
L80 TERMINATED
>M ~10D 400 22B8 04AD

Note that -E exits via an error message due to execution of
a Halt instruction. The memory image is intact, however,
and the TEKDOS Module command may be used to save it. Once
a program is saved in module format, it may then be executed
directly without going through LINK-80 again.

The bracketed numbers printed by LINK-80 before exiting are
the entry point address and the highest address loaded,
respectively. The loader default is to begin loading at
400H. However, the loader also places a jump to the start
address in location 0, which allows execution to begin at O.
The memory locations between 0003 and 0400H are reserved for
SRBls and I/O buffers at runtime.

APPENDIX C

ASCII CHARACTER CODES

CO,
Dec Hex CHR Dec Hex CHR Dec Hex CHR

000 OOH NUL 043 2BH + 086 56H V
001 01H SOH 044 2CH 087 57H W
002 02H STX 045 2DH 088 58H X
003 03H ETX 046 2EH 089 59H Y
004 04H EaT 047 2FH / 090 5AH z
005 05H ENQ 048 30H 0 091 5BH [
006 06H ACK 049 31H 1 092 5CH \
007 07H BEL 050 32H 2 093 5DH]
008 08H BS 051 33H 3 094 5EH A

009 09H HT 052 34H 4 095 5FH
010 OAH LF 053 35H 5 096 60H T

011 OBH VT 054 36H 6 097 61H a
012 OCH FF 055 37H 7 098 62H b
013 ODH· CR 056 38H 8 099 63H c
014 OEH SO 057 39H 9 100 64H d
015 OFH SI 058 3AH 101 65H e
016 10H DLE 059 3BH . 102 66H f,
017 I1H DCl 060 3CH < 103 67H 9
018 12H DC2 061 3DH = 104 68H h
019 13H DC3 062 3EH > 105 69H i
020 14H DC4 063 3FH ? 106 6AH j

(021 ISH NAK 064 40H @ 107 6BH k
022 16H SYN 065 41H A 108 6CH 1
023 17H ETB 066 42H B 109 6DH In
024 18H CAN 067 43H C 110 6EH n
025 19H EM 068 44H D III 6FH 0
026 lAH SUB 069 45H E 112 70H P
027 IBH ESCAPE 070 46H F 113 71H q
028 lCH FS 071 47H G 114 72H r
029 IDH GS 072 48H H 115 73H s
030 lEH RS 073 49H I 116 74H t
031 IFH US 074 4AH J 117 75H u
032 20H SPACE 075 4BH K 118 76H v
033 21H ! 076 4CH L 119 77H w
034 22H " 077 4DH M 120 78H x
035 23H # 078 4EH N 121 79H Y
036 24H $ 079 4FH a 122 7AH z
037 25H % 080 SOH P 123 7BH

1
038 26H & 081 51H Q 124 7CH
039 27H 082 52H R 125 7DH
040 28H (083 53H S 126 7EH
041 29H) 084 54H T 127 7FH DEL
042 2AH * 085 55H U

Dec=decimal, Hex=hexadecimal (H), CHR=character.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

(\

(

APPENDIX D

FORMAT OF LINK COMPATIBLE OBJECT FILES

This appendix contains reference material for users who wish
to know the load format of LINK-SO relocatable object files.
None of this material is necessary to the operation of ALDS.
There is nothing in the format material presented here which
can be manipulated by the user. The material is highly
technical, and it is not presented in any tutorial manner.

LINK-compatible object files consist of a bit stream.
Individual fields within the bit stream are not aligned on
byte boundaries, except as noted below. Use of a bit stream
for relocatable object files keeps the size of object files
to a· minimum, thereby decreasing the number of disk
reads/writes.

There are two basic types of load items: Absolute and
Relocatable. The first bit of an item indicates one of
these two types. If the first bit is a 0, the following S
bits are loaded as an absolute byte. If the first bit is a
1, the next 2 bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16 bits
after adding the current Program base.

10 Data Relative. Load the following 16 bits
after adding the current Data base.

11 Common Relative. Load the following 16 bits
after adding the current Common base.

Page D-2

Special LINK items consist of the bit stream 100
one-zero-zero) followed by:

a four-bit control field

(read (

an optional A field consisting of a two-bit address
type that is the same as the two-bit field described
above, except 00 specifies absolute address

an optional B field consisting of 3 bits that give a
symbol length and up to 8 bits for each character of
the symbol

A general representation of a special LINK item is:

1 00 xxxx yy nn zzz + characters of symbol name
.~ , J

V

A field B field

where: xxxx
yy
nn
zzz

is four-bit control field (0-15 below)
is two-bit address type field
is sixteen-bit value
is three-bit symbol length field

(
The following special types have a B-field only:

a Entry symbol (name for search)
1 Select COMMON block
2 Program name
3 Request library search
4 Extension LINK items (see below)

The following special LINK items have both an A field and a
B field:

5 Define COMMON size
6 Chain external (A is head of address chain, B

is name of external symbol)
7 Define entry point (A is address, B is name)

l

(

Page D-3

The following special LINK items have an A field only:

8 External - offset. Used for JMP and CALL to
externals

9 External + offset. The A value will be added
to the two bytes starting at the current
location counter immediately before execution.

10 Define size of Data area (A is size)
11 Set loading location counter to A
12 Chain address. A is head of chain. Replace

all entries in chain with current location
counter. The last entry in the chain has an
address f.ield of absolute zero.

13 Define program size (A is size)
14 End program (forces to byte boundary)

The following special LINK item has neither an A nor a B
field:

15 End file

An Extension LINK item follows the generar format of a
B-field-only special LINK item, but the contents of the
B-field are not a symbol name. Instead, the symbol area
contains one character to identify the type of extension
LINK item, followed by from 1 to 7 characters of additional
information.

Thus, every extension LINK item has the format:

1 00 0100 111 s bbbbbb

where: 111

s

bbbbbb

is 3 bits containing the length of the
field bbbbbb (0 implys 1 since F80 emits
entry length of a for Blank Common),

is an eight bit extension LINK item
sub-type identifier, and

are 1 to 6 bytes for additional
information. If used as B field for
name, bbbbbb may be only 6 characters.

The present extension LINK item sub-types are:

5 X'35' COBOL overlay segment sentinel

l A X'4l' Arithmetic Fixup (Arithmetic Operator)

B X' 42' Arithmetic Fixup (External Reference)

C X'43' Arithmetic Fixup (Area Base + Offset)

Page D-4

Descriptions of Sub-types

Sub-type 5

When the overlay segment sentinel is encountered by
LINK-SO, 111 receives the value 010 (binary), and the
current overlay segment number is set to the value b+49.
If the previously existing segment number was non-zero
and the IN switch is in effect, the data area is written
to disk in a file whose name is the current program name
and whose extension is Vnn, where nn are the two
hexadecimal digits representing the number b+49
(decimal) .

Sub-types A,B,C

Sub-tY2es A, B, and C allow the processing of Polish
Arithmetic text. Items must be read as Reverse Polish
Expression. One or more Value items (sub-type B or C)
are followed by one or more Arithmetic Operators
(sub-type A) and end with a Store-Result Arithmetic
Operator (B.STBT or B.S~~D).

All Items are put in the Fixup Table afer any offset
entries have been converted to final addresses. The
Polish expression is executed out of the Fixup Table at
the end of link. The result is stored at the PC given
when the Items were read.

(

(

(

(

APPENDIX E

Table of MACRO-80 Pseudo-ops

Notation: * means Z80 pseudo-op
no stars means 8080 pseudo-op

SINGLE-FUNCTION PSEUDO-OPS

Instruction Set Selection

.Z80

.8080

Data Definition and Symbol Definition

*
*
*
*
*

*

<name> ASET <exp>
BYTE EXT <symbol>
BYTE EXTRN <symbol>
BYTE EXTERNAL <symbol>
DB <exp>[,<exp> •..]
DB <string>[<string> ...]
DC <string>
DDB <exp>[,<exp> •••]
DEFB <exp>[,<exp> .••]
<name> DEFL <exp>
DEFM <string>[,<string> ...]
DEFS <exp>[,<val>]
DEFW <exp>[,<exp> ...]
DS <exp>[,<val»
DW <exp>[,<exp> ...)
ENTRY <name>[,<name> ...]
<name> EQU <exp>
EXT <name>[,<name> ...]
EXTRN <name>[,<name> .•.)
EXTERNAL <name>[,<name>)
GLOBAL <name>[,<name>]
PUBLIC <name>[,<name>]
<name> SET <exp> (not in .Z80 mode)

PC Mode Pseudo-ops

ASEG
CSEG
DSEG
COMMON /<block name>/
ORG <exp>
.PHASE <exp>/.DEPHASE

File Related Pseudo-ops

.COMMENT <delim><text><delim>
END [<exp>]
INCLUDE <filename>
$INCLUDE <filename>
MACLIB <filename>
.RADIX <exp>
.REQUEST <filename>[,<filename> ...]

Listing Pseudo-ops

Format Control Pseudo-ops

Page E-2

(

* *EJECT [<exp>] (one star is part of *EJECT)
PAGE <exp>
SUBTTL <text>
TITLE <text>
$TITLE

General Listing Control Pseudo-ops

.LIST

.XLIST

.PRINTX <delim><text><delim>

Conditional Listing Control Pseudo-ops

.SFCOND

.LFCOND

.TFCOND

Expansion Listinq Control Pseudo-ops

.LALL

.SALL

.XALL

(

l

(\
Cross-Reference Listing Control Pseudo-ops

.XCREF

.CREF

MACRO FACILITY PSEUDO-OPS

Macro Pseudo-ops

<name> MACRO <parameter>[,<parameter> ...]
ENDM
EXITM
LOCAL <parameter>[,<parameter> ...]

Repeat Pseudo-ops

REPT <exp>
IRP <dummy>,<parameters in angle brackets>
IRPC <dummy>,string

Page E-3

(... Conditional Assemblv Facility

l

*

*

COND <exp>
ELSE
ENDC
ENDIF
IF <exp>
IFB <arg>
IFDEF <symbol>
IFDIF <argl>,<arg2>
IFE <exp>
IFF <exp>
IFIDN <argl>,<arg2>
IFNB <arg>
IFNDEF <symbol>
IFT <exp>
IFl
IF2

C·'

APPENDIX F

Table of Opcodes

The opcodes are listed alphabetically by instruction set.
For details, refer to the reference books listed in Chapter
1.

F.l zao OPCODES

x

A
HL,rp

(

(

Opcode

ADC
ADC
ADD
AND
BIT
CALL addr
CALL cond,addr
CCF
CP
CPD
CPDR
CPI
CPIR
CPL
DAA
DEC
DI
DJNZ
EI
EX
EXX
HALT
IM
IN
INC
IND
INDR
INI
INIR
JP addr
JP cond,addr
JR

Function

Add with Carry to Accumulator
Add Register Pair with Carry to HL
Add
Logical AND
Test Bit
Call Subroutine
Call Conditional
Complement Carry Flag
Compare
Compare, Decrement
Compare, Decrement, Repeat
Compare, Increment
Compare, Increment, Repeat
Complement Accumulator
Decimal Adjust Accumulator
Decrement
Disable Interrupts
Decrement and Jump if Not Zero
Enable Interrupts
Exchange
Exchange Register Pairs and Alternatives
Halt
Set Interrupt Mode
Input
Increment
Input, Decrement
Input, Decrement, Repeat
Input, Increment
Input, Increment, Repeat
Jump
Jump Conditional
Jump Relative

cond,addr
A, (addr)

A, (Be) or (DE)
A, I
A,R

HL, (addr)
data

xy, (addr)
reg, (HL)

reg, (xy+disp)
rp, (addr)

SP,HL
SP,xy
dst,scr
(addr) , A

(BC) 0 r (DE) , A
I,A
R,A

(addr) ,HL
(HL) ,data
(xy+d i sp) , data
(addr) , xy

(HL) , reg
(xy+disp) , reg
(addr) ,rp

JR
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LDD
LDDR
LDI
LDIR
NEG
NOP
OR
OUT
OUTD
OTDR
OUTI
OTIR
POP
PUSH
RES
RET
RET
RETI
RETN
RL
RLA
RLC
RLCA
RLD
RR
RRA
RRC
RRCA
RRD
RST

cond

Page F-2

Jump Relative Conditional
Load Accumulator Direct
Load Accumulator Secondary
Load Accumulator from Interrupt Vector Register
Load Accumulator from Refresh Register
Load HL Direct
Load Immediate
Load Index Register Direct
Load Register
Load Register Indexed
Load Register Pair Direct
Move HL to Stack Pointer
Move Index Register to Stack Pointer
Move Register-to-Register
Store Accumulator Direct
Store Accumulator Secondary
Store Accumulator to Interrupt Vector Register
Store Accumulator to Refresh Register
Store HL Direct
Store Immediate to Memory
Store Immediate to Memory Indexed
Store Index Reqister Direct
Store Register
Store Register Indexed
Store Register Pair Direct
Load, Decrement
Load, Decrement, Repeat
Load, Increment
Load, Increment, Repeat
Negate (Two's Complement) Accumulator
No Operation
Logical OR
Output
Output, Decrement
Output, Decrement, Repeat
Output, Increment
Output, Increment, Repeat
Pop from Stack
Push to Stack
Reset Bit
Return from Subroutine
Return Conditional
Return from Interrupt
Return from Non-Maskable Interrupt
Rotate Left Through Carry
Rotate Accumulator Left Through Carry
Rotate Left Circular
Rotate Accumulator Left Circular
Rotate Accumulator and Memory Left Decimal
Rotate Right Through Carry
Rotate Accumulator Right Through Carry
Rotate Right Circular
Rotate Accumulator Right Circular
Rotate Accumulator and Memory Right Decimal
Restart

(

(

(> SET
SBC
SCF
SLA
SRA
SRL
SUB
XOR

F.2 8080 OPCODES

Opcode

ADC,ACI
ADD,ADI
ANA, ANI
CALL
CC
CM
CMA
CMC
CMP,CPI
CNC
CNZ
CP
CPE
CPO
CZ
DAA
DAD
DCR
DCX
DI
EI
HLT
IN
INR
INX
JC
JM
JMP
JNC
JNZ
JP
JPE
JPO
JZ
LDA
LDAX
LHLD
LXI

Set Bit
Subtract with Carry (Borrow)
Set Carry Flag
Shift Left Arithmetic
Shift Right Arithmetic
Shift Right Logical
Subtract
Logical Exclusive OR

Function

Add with Carry
Add
Logical AND
Call Subroutine
Callan Carry
Callan Minus
Complement Accumulator
Complement Carry
Compare
CalIon No Carry
CalIon Not Zero
CalIon positive
CalIon Parity Even
CalIon Parity Odd
CalIon Zero
Decimal Adjust
16-bit Add
Decrement
l6-bit Decrement
Disahle Interrupts
Enable Interrupts
Halt
Input
Increment
Increment 16 bits
Jump on Carry
Jump on r1inus
Jump
Jump on Not Carry
Jump on Not Zero
Jump on Positive
Jump on Parity Even
Jump on Parity Odd
Jump on Zero
Load Accumulator
Load Accumulator Indirect
Load HL Direct
Load 16 bits

Page F-3

MOV
MVI
Nap
ORA,ORI
OUT
PCHL
POP
PUSH
RAL
RAR
RC
RET
RLC
R."1
RNC
RNZ
RP
RPE
RPO
RRC
RST
RZ
SBB,SBI
SHLD
SPHL
STA
STAX
STC
SUB,SUI
XCHG
XRA,XRI
XTHL

Move
Move Immediate
No Operation
Logical OR
Output
HL to Program Counter
Pop from Stack
Push to Stack
Rotate with Carry Left
Rotate with Carry Right
Return on Carry
Return from Subroutine
Rotate Left
Return on Minus
Return on No Carry
Return on Not Zero
Return on Positive
Return on Parity Even
Return on Parity Odd
Rotate Right .
Restart
Return on Zero
Subtract with Borrow
Store HL Direct
HL to Stack Pointer
Store Accumulator
Store Accumulator Indirect
Set Carry
Subtract
Exchange D and E, Hand L
Logical Exclusive OR
Exchange Top of Stack, HL

Page F-4

(

(

l

INDEX

(,

$EJECT . • • • .
$INCLUDE • • .
$TITLE . . . • . . . • •

· • • 4-28
· • 4-23

· • • 4-30

8080 Opcodes • • .
8080 Opcodes as Operands .

• • 4-3
3-13

ASEG . .
ASET •.

. 4-14
•. •. 4-12

BYTE EXT . ••• • • . • • 4-10
BYTE EXTERNAL . • • • . . . • 4-10
BYTE EXTRN . • . . . • • • • . 4-10

(

Calling a Macro . . . • • • . 4-38
Character· Constants . •. 3-11
Comments • • . . • 3-2
COMMON . . • • • . • • • • • . 4-1 7
COND • • . • . . 4-49
CREF-80 Cross Reference Facility 7-1
CREF-80 Cross-Reference Facility 2-4
CSEG .•...•.•..•.. 4-15, A-1
Current Program Counter .•• 3-13, A-1

DB . . . • .• •• 4- 5
DC 4-6
DEFB • . • . • • . • . . • • . 4-5
DEFL••.•• 4-12
DEFM • . • • • • • • . • • . • 4-5
DEFS . . . • . • • • . 4-7
DEFW • . • . . • • . . • . • . 4-8
Device names as files . • . • 5-12
DS •....•......•. 4-7
DSEG .•..•• . 4-16, A-1
DW • ••••• • • • • • • 4- 8

· • • 6-19
· • 5-15

· . . 4-44
· . . 4-10

. 4-10
3-6

· . 4-10

ELSE • .• •••. 4-50
END . • . . • • • 4-22
ENDC • • • . . . • 4-50
ENDIF• .. 4-50
ENDM ••••••••••••• 4-44
ENTRY • 4-11
EQU . . . • • . . •. ..4-9
Error Messages

LINK-80 ..•..•.
MACRO-SO . • . • . .

EXITM •.•
EXT
EXTERNAL
EXTERNAL Symbols . . . • .
EXTRN

Figure

- --------

Developing assembly programs 1-5
Device Designations without filenames 5-12
Loading changes Relative address to fixed 1-7
ORG in relative modes is an offset 1-8
PUBLIC symbol linked with EXTERNAL 1-6
Relationships among programs 1-10
Table of Link-80 Switches • 6-5

File Format • 3-1, 5-13

(

GLOBAL . 4-11

· 4- 4 9
· 4- 49
· 4- 49
· • • • • • • 4-49

· 4- 4 9
· 4- 5 0

· 4- 4 9
· 4- 49

· 4- 5a
· 4- 5 0

· 4- 4 9
· 4- 49
· 4-23

· 4-42
· 4- 4 3

IF .
IFl
IF2
IFB
IFDEF
IFDIF
IFE
IFF
IFIDN
IFNB .
IFNDEF .
1FT
INCLUDE
IRP • . •
IRPC .

LABEL: · · · · · · · · · · · · 3-4
(LIB-80 Command Format · · · · 8-3

LIB-80 Library Manager · · 2-4
LIB-80 Modules · · · · · · · · 8-5
LINK-80 Error Messages · · · · 6-19
LINK-80 Linking Loader · · 2-3, 6-1
Listing Formats · · · · · 5-13
LOCAL · · · · · · · · · · · · 4-45

MACLIB · · · · · · · · 4-23
MACRO · · · · · · · · · · 4-37
MACRO-80 Error Codes and Messages 5-15
MACRO-80 Listing Files · · 5-13
MACRO-80 Macro Assembler · · · 5-1
Modes · · · · · · · · · · · · 3-7
Modes Rules for symbols in expressions 3-12

NAME • • .. •• 4-24
Numbers as operands • • • . . 3-10

Operands • • . . • . 3-10
Operator Order of Precedence. 3-17
Operators . • . • • • . . • • 3-14
ORG 4-18

PAGE ...•.......•. 4-28, A-I
Pseudo-ops

$EJECT . .•....• • 4-28
$INCLUDE • . . • 4-23
$TITLE . . . • •. .•. 4-30
ASEG • . .' 4-14

ASET 0 4-12
Block Listing 0 4-34

(
BYTE EXT 0 4-10
BYTE EXTERNAL 4-10
BYTE EXTRN 0 4-10
CO~.MON 0 · 4-17
COND 0 4-49
Conditional 4-48
Conditional Listing · 4-33
CSEG · · 4-15, A-l
Data Definition 4-4
DB · · 4-5
DC 0 4-6
DEFB 0 · 4-5
DEFL · · 4-12
DEFM · · 4-5
DEFS · 4-7
DEFW 0 · 4-8
DS · · 4-7
DSEG 0 · 4-16, A-l
DW · '0 4-8
ELSE 0 4-50
END · 4-22
ENDC · · 4-50
ENDIF · 4-50
ENDM · · 4-44
ENTRY 4-11
EQU · 4-9

(EXITM · 4-44
Expansion Listing · 4-34
EXT · 4-10
EXTERNAL 0 · 4-10
EXTRN 4-10
Format Control . · 4-28
General Listing · 4-31
GLOBAL 0 · 4-11
IF · · 4-49
IFl · 4-49
IF2 · 4-49
IFB · 4-49
IFDEF 0 4-49
IFDIF 4-50
IFE · 4-49
IFF 4-49
IFIDN 0 4-50
IFNB · · 4-50
IFNDEF . · 4-49
IFT · 4-49
INCLUDE · 4-23
IRP · 4-42
IRPC · 4-43
Listing 4-27
LOCAL 4-45
MACLIB . · 4-23

(MACRO · 4-37
Macro Listing · 4-34
NAME · 0 4-24
ORG · 4-18

PAGE · · · · · · · · · · · · 4-28, A-1
PC Mode · · · · · · · · 4-13
PUBLIC · · · · · · · · · · · 4-11 (
REPT · · · · · · · · · · 4-41
SET · · · · · · · · · · 4-12
SUBTTL · · · · · · · 4-30; A-1
Symbol Definition · · · 4-4
TITLE · · · · · · · · · · · 4-29
.PHASE · · · · · · · · · · · 4-19
.DEPHASE · · · · · · · · 4-19
. COMMENT · · · · · · · · · · 4-21
• RADIX · · · 4-25
• REQUEST · · · · · · · · 4-26
*EJECT · · · · · 4-28
.LIST · · · · · · · · · 4-31
.XLIST · · · · · · · · · · · 4-31
.PRINTX · · · · · · 4-32
.SFCOND · · · · · · · · 4-33
.LFCOND · · · · · · · · 4-33
.TFCOND · · · · · · · · 4-33
.XALL · · · · · · · · · 4-34
.LALL · · · 4-34
.SALL · · · · · · · 4-34
.CREF · · · · · · · · · · · 4-35
• XC REF · · · · · · · 4-35
.CREF · · · · · · · · · · · 7-3
.XCREF · · · · · · · · · 7-3

PUBLIC · · · · · · · · · · · · 4-11
(-PUBLIC Symbols · · · · 3-5

REPT • • • • • • • •• •• 4-41
Restrictions on module placement with LINK-80 6-12 to 6-13
Rules for EXTERNALS in expressions 3-12

A-1

· . . 6-12
· 6-8

· • 6-6
· 6-17

• • • . 8-9
· • 8-9
· • 8-9
• • 8-10

• 8-9
• • • 8-10
· • • 8-9

· 8-9

SET • • • • • . • •• •• 4-12
Special Macro Operators • • • 4-46

% • • • • • • • 4-46
. 4- 46

;; 4-46
& ••• • • • • • • 4- 46

Special Radix Notation . • • • 3-10
Statement Line Format . . • . 3-1
Strings . . • • • . . • . 3-11
SUBTTL • . . • • • • .. • 4-30,
Switches

LIB-80 • . . • •
Ie
IE
IH ••••
/L
/0
/R
/U

LINK-80
/0
IE
/G
IH

-- ------------------~

(

(

1M .
IN •
IN:P
10 .
IP
IR .
IS
IU
IX
Iy

MACRO-80
IH
II
IL
1M .
10
IP
IR .
IX
IZ

Symbol Table format
Symbols
Symbols in expressions
Symbols Rules
Syntax Notation
System Requirements

TEKDOS
TITLE

z80 Opcodes

.PHASE •

.DEPHASE

.COMMENT •
• RADIX
• REQUEST
*EJECT •
.LIST
.XLIST .
.PRINTX
.PRINTX
.SFCOND
.LFCOND
.TFCOND
.XALL
.LALL
.SALL
.CREF
.XCREF
10 MACRO-80
IH MACRO-80
IR MACRO-SO
IL MACRO-80
Iz MACRO-80
II MACRO-80
Ip MACRO-80
1M MACRO-80

6-16
6-9
6-10
6-17
6-11
6-14
6-15
6-16
6-18
6-18
5-6
5-6
5-7
5-7
5-8
5-6
5-7
5-6
5-8
5-7
5-14
3-3
3-12
3-3
1-3
1-2

• B-1
4-29

4-3

4-19
4-19
4-21
4-25
4-26
4-28
4-31
4-31
4-32
4-32
4-33
4-33
4-33
4-34
4-34
4-34
4-35
4-35
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-8

/X - MACRO-SO · · · · · · · · 5-S
/G - LINK-SO · · · · · 6-6
/E - LINK-SO · · · · · · · 6-S (/N - LINK-SO · · · · · · · 6-9
/N:P - LINK-SO · · · · · · · · 6-10
/P - LINK-SO · · · · · · · 6-11
/D - LINK-SO · · · · · · · · · 6-12
/R - LINK-80 · · · · · · · · · 6-14
/S - LINK-80 · · · 6-15
/U - LINK-80 · · · · · · · · · 6-16
/M - LINK-80 · · · · · · · 6-16
/0 - LINK-80 · · · · · · · 6-17
/H - LINK-80 · · · · · · · · · 6-17
/X - LINK-SO · · · · · · · 6-18
/y - LINK-80 · · · · · · · 6-18
.CREE · · · · · · · · · · 7-3
.XCREE · · · · · · · · · · 7-3
/E - LIB-80 · · · · · · · · · 8-9
/R - LIB-SO · · · · · · · · · 8-9
/L - LIB-80 · · · · · · · · · 8-9
/U - LIB-SO · · · · · · · 8-9
/C - LIB-SO · · · · · · · S-9
/0 - LIB-SO · · · · · · · S-10
/H - LIB-SO · · · 8-10
$ - Current Program Counter · A-1
% · · · · · · · · · · · · 4-46

· · · · · · · · · · · · · · 4-46.. · · · · · · · · · .. 4-46, ,
(& · · · · · · · · · · · · · · 4-46

