
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 ALTERATION GUIDE

Copyright (oj In79

DIGITAL RESEARCH

Copyright

Copyright <cl 1979 by Digital Research. All rights reserved.
No pa..t of this publication may be reproduced, transmitted.
transcribed, stored in 8 retrieval system, or translated into
any languaKe or computer language. in any form or by any
means, electronic, mechanical. magnetic, optical. chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579. Pacific Grove.
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the ri~ht

to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

TrAdemarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2.2 ALTERATION GmDE

Copyright (e) 1979
Digital Research, Box 579
Pacific Grove, California

2. First Level System Regeneration

1 • Introduction

•

1

2

3. Second Level System Generation

4. Sample Getsys and putsys Programs

5. Diskette Organization

6. The OIOS Entry Points

•

6

10

12

14

8. A Sample Cold Start Loader

7. A Sample BIOS 21

22

9. Reserved Locations in page Zero

l~. Disk Parameter Tables

11. The DISKDEF Macro Library

12. Sector Blocking and Deblocking

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

•

23

25

30

34

36
39
50
56
59
61
66

1. INTRODUC-rrON

The standard CP/M system assumes operation on an Intel MDS-800
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment. In this way, the user can produce a diskette
which operates with any IBM-3741 format compatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"hard disk" systems. In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M is available, the
customizing process is eased considerably. In this latter case, you
may wish to briefly review the system generation process, and skip to
later sections whiCh discuss system alteration f.or non-standard disk
systems.

In order to achieve device independence, CP/M is separated into
tnree distinct modules:

BIOS - basic I/O system which is environment dependent
BOOS - basic disk operating system which is not dependent

upon the hardware configuration
CCP - the console command processor which uses the BOOS

Of these modules, only the BIOS is dependent upon the particular
_ hardware. That is, the user can "patch" the distribution version of

CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first
time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal
version of the BIOS is given in Appendix C which can serve as the
basis for a modified BIOS. In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. In order to patch the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D. In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1

------- ".--- -- --I;'"~------

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS com~letely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the aIOS given in Aopendix B, and write a sim~le version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call tnis new BIOS by the
name CBIOS (customized BIOS). Implement only the ~rimitive disk
operations on a single drive, and sim9le console input/out9ut
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Researcn.J

2

(7) Test COI05 completely to ensure that it orooerly gerforms
console character I/O and disK readS and writes. Be ~50ecially

careful to ensure that no oisk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes. failure to make these checks
may cause destruction of the initialized CP/M system after it is
patched.

(d) Referring to Figure 1 in Section 5. note that the 3105 is
placed between locations 4A~0H and 4FFFH. Read the CP/~ system using
GETSYS and replace the BIOS segment by the new cal OS developed in step
(6) and tested in step (7). 'rhis replacement is done in the memory of
the maChine, and will be 9laced on the diskette in the next ste~.

(~) Use PU~SYS to 91ace the patChed memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(111) Use GE'rSYS to bring tne copied memory image rrom the test
diskette back into memory at 338~H. and check to ensure that it has
loaJed back properly (clear memory, if possible, before the load).
Upon successful load, brancn to the cold start code at location 4A00n.
~he cold start routine will initialize page zero, then jumo to the CCP
at location 34~~H whicl) will call the BOOS, which will call the CBIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2.
and if successful, CP/M will type "A)", the systejn orornet.

when you make it this far, you are almost on the air.
trouble. use whatever debug facilities you have available
breaKpoint your CBIOS.

It you have
to trace and

(11) Upon completion of step (10), CP/M has orom?ted the console
for a command input. Test the disk write operation by typing

SAVE I X.COM

(recall that all commands must be followed by a carriage return).

CP/M should res9Qnd with another prompt (after several disk accesses):

A>

If it does not, deoug your disK write functions and retry.

(12) Then test the directory command by typing

OIR

CP/M should respond with

A: X COM

(lJ) 'rest tne erase command by typing

ERA X.COH

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A prompt.
should have an operational system which
loader to fu~tion completely.

When you make it this far, you
will only require a bootstrap

(14) Write a bootstrap loader which is similar to GETSYS,
place it on track 0, sector 1 using PUTSYS (again using the
diskette, not the distribution diskette). See Sections 5 and 8
more information on the bootstrap operation.

and
test

for

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Upon completion ot
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A prompt.

(16) At this point, you probably have a good version of your
customized CP/M system on your test diskette. Use GETSYS to load CP/M
from your test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing

DIR

CP/M should respond with a list of
initialized diskette. One such
the debugger, called DDT.COM.

files which
file should

are provided on
be the memory image

the
for

NOTE: from now on, it is important that you always reboot the CP/M
syste:n (ctl-C is sufficient) when the diskette is removed and replaced
by anotner diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by typing

DDT

(see the document "CP/M Dynamic Debugging Tool (DDT)" for operating
proceaures. You should take the time to become familiar with DDT. it
will be your best triend in later steps.

(l~) 8efore making further CBIOS modifications, practice using
the editor (see the ED user's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS. PUTSYS, and CBIOS
programs using ED, ASf1, and DDT. Code and test a COPY l?rogram which
does a sector-to-sector copy from one diskette to another to obtain
oack-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies your legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyr ight (e). 197;
Digital Research

(All Information Contained Herein is Proprietary to Digital Researcn.J

4

on each copy which is made with your COpy program.

(20) Modify your CSlOS to include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a additional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which you have
developed, or you can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CSIOS portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for your use only (again. read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all
other CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-proprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

5

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/M with the "110VCPM" program (system relocator) and
place this memory image into a named disk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities"
:nanual.

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format.

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx *

.....here "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response ill be:

CONSTRUCTING xxK CP/M VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this ooint, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location 090~H through
227F~. (i.e .• The BOOT is at 09008, the CCP is at 980H, the BOOS
starts at 1180H, and the BIOS is at IF80H.) Note that the memory
image has the standard MOS-8BB BIOS and BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CPMxx.COM

The memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere ith the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed in preparation for a ne..... generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx. COM

DDT should respond with

Load DDT, then read the CPM
image

NEXT
2300

PC
0100

(The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image between 900H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual
address. Track 00, sector 01 is loaded to location 900H (you should
find the cold start loader at 900H to 97FH), track 00, sector 02 is
loaded into 980H (this is the base of the CCP), and so-forth through
the entire CP/M system load. In a 20K system, for example, the CCP
resides at the CP/M address 3400H, but is placed into memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 340BH

Assuming two's complement arithmetic, n = 0580H, which can be checked
by

3400H + OS80H = 10980H = 0980H (ignoring high-order
overflow) .

Note that for larger systems, n satisfies

(3400H+b) + n = 980H, or
n = 980H - (3400H + b), or
n = OS80H - b.

The value of n for common CP/M systems is given below

memory size bias b negative offset n

20K 0000H OS80H 0000H = OS80H
24K 10008 oS80H - !B00H = CS80H
32K 3000H OS80H - 3000H = AS80H
40K S000H OS80H - S000H = 8S80H
48K 7000H OS80H 7000H = 6S80H
S6K 9000H OS80H - 9000H = 4S801l
62K A80BH OS80H - A80BH = 2080H
64K B000H OS80H - B000H = 2S80H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

HX,n Hexadecimal sum and difference

and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The input

83400,0580

for example, will produce 980H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the 9105 located at
(4A00H+o)-n which, when you use the H command, produces an actual
address of IF80H. 'rhe disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

LlF88

It is now necessary to patch
BOOT resides at location
load address is "0"; then to

in your CBOOT and CalDS
0900H in the memory image.
calculate the bias (m) use

routines. The
If the actual

the command:

,

8900,0 Subtract load address from
target address.

The second number typed in response to the command is the desired bias
(m). For example, if your BOOT executes a~ 0080H, the command:

H900,88

will reply

0980 8880 Sum and difference in hex.

'rherefore. the bias "m" would be 0880H. To read-in the BOOT, give the
command:

Ie BOOT. HEX

Then:

Rm

You may now examine your CBOOT with:

L900

Input file CBOOT.HEX

Read CBOOT with a bias of
m 1=908H-n)

We are now ready to replace the CaIDS.
where the original version of the CalaS

Examine
resides.

the
Then

area
type

at lF80H

ICBIOS.HEX Ready the "hex" file for loading

assume that your CBros is being integrated into a 20K CP/M system, and
thus is origined at location 4A00H. rn order to properly locate the
ceres in the memory image under DDT, we must apply the negative bias n
for a 2QK system when loading the hex file. This is accomplished by
typing

R05sa Read the file with bias D580H

Upon completion of the read, re-examine the area where the CBIDS has
been loaded (use an "LIF80" command), to ensure that is was loaded
properly. When you are satisfied that the change has been made,
return from DDT using a control-C or "G0" command.

Now use SYSGEN to replace the patched memory image back onto a
diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is ~roprietary to Digital Research.)

8

SYSGEN
SYSGEN VERSION 2.0
SOURCE DRIVE NAME (OR

DESTINATION DRIVE NAME

DESTINATION ON B, THEN

Start the SYSGEN program
Sign-on message from SYSGEN

RETURN TO SKIP)
Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
(OR RETURN TO REBOOT)
Respond with "8" to write the
new system to the diskette in
drive B.
TYPE RETURN
Place a scratch diskette in
drive B. then type return.

FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright Ie), 1979
Digital Research

9

4. SkMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Section 2. The READSEC and WRITESEC
subroutines must be inserted by the user to read and write the
specific sectors.

·,·,
;

·,
;

GETSYS PROGRAM
REGISTER

A
B
C
DE
HL
SP

READ TRACKS 0 AND 1 TO MEMORY AT 3380H
USE

(SCRATCH REGISTER)
TRACK COUNT (0, 1)
SECTOR COUNT (1,2, ••• ,26)
(SCRATCH REGISTER PAIR)
LOAD ADDRESS
SET TO STACK ADDRESS

;
START: LXI SP,3380H

LXI H, 3380H
MVI B, 0

RD'fRK :
MVI C,l

RDSEC:
CALL READSEC
LXI D,128
DAD D
INR C
MOV A,C
CPI 27
JC RDSEC

;SET STACK POINTER TO SCRATCH AREA
;SET BASE LOAD ADDRESS
;START WITH TRACK 0
;READ NEXT TRACK (INITIALLY 0)
;READ STARTING WITH SECTOR 1
;READ NEXT SECTOR
;USER-SUPPLIED SUBROUTINE
;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
;HL = HL + 128
;SECTOR = SECTOR + 1
;CHECK FOR END OF TRACK

;CARRY GENERATED IF SECTOR < 27

ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
JC RDTRK ;CARRY GENERATED IF TRACK < 2

;
ARRIVE HERE AT END OF LOAD, HALT FOR NOW

HLT

USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:
; ENTER WITH TRACK NUMBER IN REGISTER B,
; SECTOR NUMBER IN REGISTER C, AND
; ADDRESS TO FILL IN HL
;

PUSH
PUSH

B
H

;SAVE BAND C REGISTERS
;SAVE HL REGISTERS..

perform disk read at this point, branch to

label START if an error occurs..
POP
POP
RET

H
B

;RECOVER HL
;RECOVER BAND C REGISTERS
;BACK TO MAIN PROGRAM

END START

(All Information Contained Herein is Proprietary to Digital Research.)

10

Note that this program is assembled and listed in
reference purposes, with an assumed origin of 10011.
operation codes which are listed on the left may be
program has to be entered through your machine's front

Appendix C for
The hexadecimal
useful if the
panel switches.

~he PUTSYS program can be constructed from GETS~S by changing only
a few operations in the GETS~S program given above. as shown in
Appendix D. The register pair HL become the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL
is written to the track given by register B and sector given by
register C. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Proprietary to Digital Research.)

11

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
CP/M is given here for reference purposes. The first sector (see
table on the following page) contains an optional software boot ,
section. Disk controllers are often set up to bring track 0, sector 1
into memory at a specific location (often location 000~H). The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
3400H+b. If your controller does not have a built-in sector load, you
can ignore the program in track 0, sector 1. and begin the load from
track 0 sector 2 to location 3400H+b.

As an example, the Intel MDS-800 hardware cold start loader brings
track 0, sector 1 into absolute address 3000H. Upon loading this
sector, control transfers to location 3000H, where the bootstrap
operation commences by loading the remainder of tracks ~, and all of
track 1 into memory, starting at 3400H+b. The user should note that
this oootstrap loader is of little use in a non-MDS environment,
although it is useful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

•

(All Information Contained Herein is Proprietary to Digital Research.)

12

Track, Sector. pagel Memory Address CP/M Module name
--

ee U (boot address) Cold Start Loader
--

ee.,
..
....
..
.,
..

..

..
ee

ee
..
.,

..

..

..

..
U..

..

..

..

..

..

..
..
..
..
..
..
U

U..
..
..
..
U

e2
e3
e4
e5
e6
e7
08
e9
Ie
11
12
13
14
15
16
17

18
19
2e
21
22
23
24
25
26
01
02
e3
e4
e5
06
07
e8
09
le
11
12
13
14
15
16
17
18
19

20
21
23
24
25
26

00..
U

e2..
e3

04..
05..
06

07..

08..
09

Ie..
11..
12..
13..
14

15..
16..
17..
18..
19..
2e..
21..
22..
23..
24..

34eeH+b
348eH+b
35e0H+b
35d0H+b
36eeH+b
368eH+b
37eeH+b
378eH+b
38eeH+b
388eH+b
3geeH+b
398eH+b
3AeeH+b
3A8eH+b
3BeeH+b
3B8eH+b

3ceeH+b
3C80H+b
30e0H+b
30BeH+b
3EeeH+b
3E8eH+b
3F00H+b
3F8eH+b
4e0eH+b
4e8eH+b
41eeH+b
4l8eH+b
42e0H+b
428eH+b
43eeH+b
43BeH+b
440eH+b
448eH+b
450eH+b
458eH+b
460eH+b
46BeH+b
4700H+b
4780H+b
480eH+b
4880H+b
4geeH+b
4980H+b

4A0eH+b
4A80H+b
4Be0H+b
4B8eH+b
4Ce0H+b
4C80H+b

CCP.,
..

..

..

..

..

..

CCP

BOOS

..

..

..

..

..

..

..

..
..
..
..
..
..
..
..
..
..
..
..

BOOS

BIOS..
..
..
..

BIOS,---
02-76 U-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6. rHE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and BOOS
are detailed below. Entry to the BIOS is through a "jump vector"
located at 4A00H+b, as shown below (see Appendices Band C, as well).
The jump vector is a sequence of 17 jump instructions which send
program control to the individual BIOS subroutines. The BIOS
subroutines may be empty for certain functions (i.e., they may contain
a single RET operation) during regeneration of CP/M, but the entries
must be present in the jump vector.

The jum9 vector at 4A00H+b takes the form shown below, where the
individual jump addresses are given to the left:

4AB0H+b JMP BOOT · ARRIVE HERE FROM COLD START LOAD,
4AB3H+b JMP WBOOT ARRIVE HERE FOR WARM START
4A06H+b JMP CONST ; CHECK FOR CONSOLE CHAR READY
4A09H+b JMP CONIN · READ CONSOLE CHARACTER IN,
4A0CH+b JMP CONOUT WRITE CONSOLE CHARACTER OUT
4A0FH+b JMP LIST WRITE LISTING CHARACTER OUT
4A12H+b JMP PUNCH WRITE CHARACTER TO PUNCH DEVICE
4A15H+b JMP READER READ READER DEVICE
4A1BH+b JMP HOME · MOVE TO TRACK 00 ON SELECTED DISK,
4A1BH+b JMP SELDSK SELECT DISK DRIVE
4AIEH+b JMP SETTRK ; SE'r 'TRACK NUMBER
4A21H+b JMP SETSEC ; SET SEcrOR NUMBER
4A24H+b JMP S ETDMA ; SET DMA ADDRESS
4A278+b JMP READ READ SELECTED SECTOR
4A2AH+b JMP WRITE ; WRITE SELECTED SECTOR
4A2DH+b JMP LISTS'T RETURN LIST STATUS
4A30H+b JMP S ECTRAN SECTOR TRANSLATE SUBROUTINE

Each jump address corresponds to a particular subroutine which
performs the specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character I/O
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST, and diskette I/O performed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/O operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero.
An end-of-file condition for an input device is given by an ASCII
control-z (IAH). Peripheral devices are seen by CP/M as "logical
devices, and are assigned to physical devices within the BIOS.

In order to operate, the BOOS needs only the CONST, CONIN, and
CONOUT subroutines (LIST, PUNCH, and READER may be used by PIP, but
not the BOOS). Further, the LISTST entry is used currently only by
OESPOOL, and thus, the initial ve:sion of CBIOS may have empty
subroutines for the remaining ASCII devices.

(All Information Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

LIST The principal listing device, if it
system, which is usually a hard-copy
printer or Teletype.

exists
device,

on your
such as a

PUNCH

RElIDER

The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

The principal tape reading device, such as a simple
optical reader or ~eletype.

Note that a single peripheral can be assigned as
the LIST, PUNCH, and READER device simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not "hang" if the device is accessed by PIP or some
other user program. Alternately, the PUNCH and LIST
routines can just simply return. and the READER routine
can return with a I"'H (ctl-Z) in reg '" to indicate
immediate end-of-file.

For added flexibility, the user can optionally
implement the "IOBYTE" function Which allows
reassignment of physical and logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which can be altered during CP/M
processing (see the STAT command). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently
location 0~~3H) is maintained, called IOBYTE, which
defines the logical to physical device mapping wnich is
in effect at a partiCUlar time. The mapping is
performed by splitting the IOBYTE into tour distinct
fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

IOBYTE A'f eee3H I LIST I PUNCH I RElIDER I CONSOLE I

bits 6,7 bits 4,5 bits 2,3 bits 0,1

The value in each field can be in the range 0-3,
defining the assigned source or destination of each
logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

15

CONSOLE field (bits 0,1)
8 - console is assigned to the console printer device (TTY:)
1 console is assigned to the CRT device (CRT:)
2 batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
3 user defined console device (UCl:)

READER
o
1
2
3

field (bits 2,3)
- READER is the Teletype device (TTY:)
- READER is the high-speed reader device (RDR:)
- user defined reader i 1 (URI:)
- user defined reader. 2 (UR2:)

PUNCH
o
1
2
3

field (bits 4.5)
- PUNCH is the Teletype device (TTY:)
- PUNCH is the high speed punch device (PUN:)
- user defined punch. 1 (UPl:)
- user defined ?unch i 2 (UP2:)

LIST field (bits 6,7)
8 - LIST is the Teletype device (TTY:)
1 LIST is the CRT device (CRT:)
2 LIST is the line printer device (LPT:)
3 - user defined list device (ULI:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at location
~0~3H), except for PIP which allows access to the
physical devices, and STAT which allows
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide"). In any case, the IOBYTE
implementation should be omitted until your basic caIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities.

Disk I/O is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/O operation. After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation.
Note that there is often a single call to SEtOSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations. Similarly,
there may be a single call to set the DHA address,
followed by several calls which read or write from the
selected DMA address before the DMA address is changed.
The track and sector subroutines are always called
before the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

16

Note that the READ and WRITE routines should
perform several retries (10 is standard) before
reporting the error condition to the BOOS. If the
error condition is returned to the BOOS, it will report
the error to the user. The HOME subroutine mayor may
not actually perform the track 00 seek, depending upon
your controller Characteristics; the important point is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 00.

~he exact
subroutine are

responsibilites
given below:

of each entry point

BOOT

WBOOT

The BOOT entry point gets control from the cold start
loader and is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point. The various system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing. Note that reg C must be set to zero to
select drive A.

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user
program branches to location 0000H, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini
tialized as shown below:

location 0,1,2 set to JMP WBOOT for warm starts
(~~~0H: JMP 4A03H+b)

location 3 set initial value of IOBYTE, if
implemented in your CBlOS

location 5,6,7 set to JMP BOOS, which is the
primary entry point to CP/M for
transient programs. (0005H: JMP
3C06H+b)

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3400H+b to (re)start
the system. Upon entry to the CCP, register C is set
to the drive to select after system initialization.

CONST Sample the
device and
ready to
characters

status of the currently assigned console
return 0FFH in register A if a character is
read, and 00H in register A if no console
are ready.

CONIN Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

CONOUT

set the parity bit (high order bit) to zero. If no
console character is ready, wait until a character is
typed before returning.

Send the character from register C to the console
output device. The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (such as a TI Silent 700 terminal). You
can, if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for exam9Ie).

LIST Send the character
assigned listing
with zero parity.

from register
device. The

C to the currently
character is in ASCII

PUNCH Send the character from
assigned punch device.
zero parity.

register C to the
The character is in

currently
ASCII with

READER

HOME

SELDSK

Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must be zero), an end of file condition is
reported by returning an ASCII control-z (IAH).

Return the disk head of the currently selected disk
(initially disk A) to the track ~0 position. If your
controller allows access to the track 0 flag from the
drive, step the head until the track ~ flag is
detected. If your controller does not support this
feature, you can translate the HOME call into a call
on SETTRK with a parameter of 0.

Select the disk drive given by register C for further
operations, where register C contains 0 for drive A, I
for drive B, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives). On each disk sele~t, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section l~. For
standard floppy disk drives. the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive,- SELDSK returns
HL=~0~~H as an error indicator. Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/O function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/O, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.)

18

SETTRK

SETSEC

SETDMA

READ

wRITE

before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

Register Be contains the track number for subsequent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register Be can take on values in the range
0-76 corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard disk
subsystems.

Register Be contains the sector number (1 through 26)
for subsequent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

Register Be contains the DMA (disk memory access)
address for subsequent read or write operations. For
example, if B = 00H and C = 80H when SETDMA is called,
then all subsequent read operations read their data
into 80H through 0FFH, and all subsequent write
o~erations get their data from 80H through 0FFH, until
the next call to SETDMA occurs. The initial OMA
address is assumed to be 80H. Note that the
controller need not actually support direct memory
access. If, for example, all data is received and
sent through I/O ~orts, the CBIOS which you construct
will use the 12g byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations.

Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA address
has been specified, the READ sUbroutine attem~ts to
read one sector based upon these parameters, and
returns the following error codes in register A:

o no errors occurred
I non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as toe return code. That is, if the value in
register A is 0 then CP/M assumes that the disk
operation completed properly. If an error occurs,
however, the CBIOS should attempt at least 10 retries
to see if the error is recoverable. When an error is
reported the BOOS will print the message "BOOS ERR ON
x: BAD SECTOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort.

Write the data from the currently selected DMA address
to the currently selected drive, track, and sector.
The data should be marked as "non deleted data" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

LISTST

SECTRAN

maintain compatibility with other CP/M systems. The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above.

Return the ready status of the list device. Used by
the DESPOOL program to improve console response during
its operation. The value 0~ is returned in A if the
list device is not ready to accept a character, and
0FFH if a character can be sent to the printer. Note
that a 00 value always suffices. -

Performs sector logical to physical sector translation
in order to improve the overall response of CP/M.
Standard CP/M systems are shipped with a "skew factor"
of 6, where six physical sectors are skipped between
each logical read operation. This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector. In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response. Note, however.
that you should maintain a single density IBM
compatible version of CP/M for information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC. and a translate table address in
DE. The sector number is used as an index into the
translate taole, witn the reSUlting physical sector
number in HL. For standard systems. the tables and
indexing code is 9rovided in the CBIDS and need not be
changed.

(All Information Contained Herein is Proprietary to Digital Research.)

20

7. ~ SAMPLE BIOS

The program shown in Appendix C can serve as a basis for your
first BIOS. The simolest functions are assumed in this BIOS. so that
you can enter it through the front panel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the BIOS is used in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial ~ign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

21

8. A SAMPLE COLO START LOADER

The program shown in Appendix D can serve as a basis for your cold
start loader. The disk read function must be supplied by the user,
and the program must be loaded somehow starting at location 0000.
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(track 0. sector 1), and cause your controller to load it into memory
automatically upon system start-ug. Alternatively, you may wish to
place the cold start loader into ROM, and place it above the CP/M
system. In this case, it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
which branches to the loader. Subsequent warm starts will not require
this key-in operation, since the entry point 'WBOOT' gets control,
thus bringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
be enhanced on later versions.

(All Information Contained Herein is Proprietary to Digital Research.)

22

9. RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations 00H and 0FFH, contains
several segments of code and data which are used during CP/M
processing. The code and data areas are given below for reference
purposes.

Locations
from to
0000H - 0002H

Contents

Contains a jump instruction to the warm start
entry point at location 4A03H+b. This allows a
simple programmed restart (JMP 0000H) or manual
restart from the front panel.

0003H - 0003H Contains the Intel standard
optionally included in the
described in Section 6.

IOBYTE,
user's

which
CBIOS,

is
as

0004H - 0004H

0005H - 0007H

000BH - 0027H

0030H - 0037H

003BH - 0031\H

003BH - 003FH

0040H - 004FH

0050H - 005BH

Current default drive number (0=A •...• 15=P).

Contains a jump instruction to the OOOS,and
serves two purposes: JMP 0065H provides the
primary entry point to the BOOS, as described in
the manual "CP/M Interface Guide," and LHLD
0006H brings the address field of the
instruction to the HL register pair. Ttlis value
IS the lowest address in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DDT program will change the address
field to reflect the reduced memory size in
debug mode.

(interrupt locations I through 5 not used)

(interrupt location 6, not currently used
reserved)

Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for orogrammed breakpoints, but is not otherwise
used by CP/M.

(not currently used - reserved)

16 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version of CP/M

(not currently used - reserved)

005CH - 007CH default
transient
Processor.

file control
program by

block produced
the Console

for a
Command

007DH - 007FH Optional default random record position

(All Information Contained Herein is proprietary to Digital Research.)

23

0080H - 00FFH default 128 byte disk buffer
the command line when a
under the CCP).

(also filled with
transient is loaded

Note that this information is set-up for normal operation under
the CP/M system, but can be overwritten by a transient program if the
BOOS facilities are not required by the transient.

If, for example, a particular program performs only simple I/O and
must begin execution at location 0. it can be first loaded into the
TPA. using normal CP/M facilities. with a small memory move program
which gets control when loaded (the memory move program must get
control from location 0100H, which is the assumed beginning of all
transient programs). The move program can then proceed to move the
entire memory image down to location 0, and pass control to the
starting address of the memory load. Note that if the BIOS is
overwritten, or if location 0 (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start sequence.

•

(All Information Contained Herein is Proprietary to Digital Research.)

24

10. DISK PARAMETER TABLES.

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CelDS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte)
parameter header which both contains information about the disk
and provides a scratchpad area for certain BOOS operations.
format of the disk parameter header for each drive is shown below

disk
drive

The

Disk Parameter Header

XLT I 0000 I 0000 I 0000 IDIRBUF! DPB CSV ALV

16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT

0000

Address of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same). Disk drives
with identical sector skew factors share the same
translate tables.

Scratchpad values for use within the BDOS (initial
value is unimportant).

DIRBUF Address of
operations
scratchpad

a 128 byte scratchpad area for directory
within BOOS. All DPH's address the same

area.

Dre

C~

ALV

Address of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

Address of a scratchpad area used for software check
for changed disks. This address is different for each
DPH.

Address of a scratchpad area used by the BOOS to keep
disk storage allocation information. This address is
different for each DPH.

Given n disk drives, the DPH's are arranged in a table whose first row
of 16 bytes corresponds to drive 0, with the last row corresponding to
drive n-l. The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

BB IXLT BBI BBBB I BBBB I BBBB IDIRBUF\DBP BBICSV BBIALV BBI

Bl \XLT Bli BBBB I BBBB I BBBB IDIRBUFIDBP Bllcsv 01lALV Bli

(and so-forth through)

n-lIXLTn-lI BBBB I BBBB I BBBB I DIRBUF IDBPn-l ICSVn-l IALVn-ll

where the label OPBASE defines the base address of the OPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the OPH for the selected drive. The following sequence of
operations returns the table address, with a e000H returned if the
selected drive does not exist.

,

NDISKS...... EQU 4 ,NUMBER OF DISK DRIVES

SELDSK:
,SELECT DISK GIVEN BY BC
LXI H,BBBBB ,ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ICY IF SO
RNC ;RET IF ERROR
,NO ERROR, CONTINUE
MOV L,C ,LOW(DISK)
MOV H,B ;HIGH(DISK)
DAD H ;*2
DAD H ;*4
DAD H ;*8
DAD H ;*16
LXI D,DPBASE ;FIRST DPH
DAD D ;DPH(DISK)
RET

The translation vectors (XLT 00 through XLTn-l) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-I. The Disk
Parameter Block (OPS) for each drive is more complex. A particular
OPS, which is addressed by one or more OPH'S, takes the general form

SPT IBSHIBLMIEXMI DSM DRM IALBIALll CKS OFF

16b 8b 8b Bb 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the ~8b" or "16b"
indicator below the field.

SPT

BSH

is the total number of sectors per track

is the data allocation block shift factor, determined
by the data block allocation size.

(All Information Contained Herein is Proprietary to Digital Research.)

26

EXM is the extent
al~ocation size

mask, determined by
and the number of disk

the data
blocks.

block

DSM

DRM

CKS

OFF

detp.rrnines the total storage capacity of the disk drive

determines the total number of directory entries which
can be stored on this drive AL0,ALl determine reserved
directory blocks.

is the size of the directory cheCk vector

is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and 8LM determine (implicitly) the data allocation
size 8LS, which is not an entry in the disk parameter block. Given
that the designer has selected a value for 8L5, the values of aSH and
BLM are shown in the table below-

BLS
1,024
2,048
4,096
8,192

16,384

BSH
3
4
5
6
7

BLM
7

15
31
63

127

where all values are in decimal. The value of EXM depends upon both
the BLS and whether the DSM value is less tpan 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive. measured in BLS units. The product BLS times
(DSM+I) is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks.

The DRM entry is the one less than the total number of directory
entries, which can take on a 16-bit value. The values of ALe and ALl,
however, are determined by DRM. The two values ALe and ALI can
together be considered a string of 16-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

27

ALB ALI

BB B1 B2 B3 B4 B5 B6 B7 B8 B9 1B 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL0, and 15 corresponds to the low order bit of the byte
labelled ALI. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

8LS
l,B24
2,B48
4,B96
8,192

16,384

Directory Entries
32 times i bits
64 times i bits
128 times. bits
256 times' bits
512 times i bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries per block, requiring 4 reserved blocks. In
this case, the 4 high order bits of AL0 are set, resulting in the
values AL0 = 0F0H and ALI = 00H.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the last directory
entry number. If the media is fixed, then set eKS = 0 (no directory
records are checked in this case).

Finally,
skipped at the
automatically
mechanism for
partitioning a

the OFF field determines the number of tracks which are
beginning of the physical disk. This value is

added whenever SETTRK is called, and can be used as a
skipping reserved operating system tracks, or for
large disk into smaller segmented sections.

To complete the discussion of the OPB, recall that several DPH's
can address the same OPB if their drive characteristics are identical.
F~rther, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BOOS
copies the OPB values to a local area whenever the SELOSK function is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by the
values in the OPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (ORM+l)/4, then you must reserve (DRM+l)/4 bytes for
directory check use. If CKS = 0, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28

The size of the area addressed
maximum number of data blocks allowed
computed as (DSM/8)+1.

by ALV is determined by the
for this particular disk, and is

The CBIOS shown in Appendix C demonstrates an instance
tables for standard 8" single density drives. It may be
examine this program, and compare the tabular values
definitions given above.

of these
useful to
with the

(All Information Contained Herein is Proprietary to Digital Research.)

29

11. THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process. You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro library is included with all CP/M 2.9
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
·.....
DISKS n
DISKDEF ", ...
DISKDEF 1 , .••·.....
DISKDEF n-l
·.....
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-l (corresponding to logical drives A
through Pl. N~te that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary un initialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, un
where

dn is the logical disk number, 0 to n-l
fse is the first physical sector number (0 or 1)
Ise is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
eks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[0 J is an optional 1,4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research.)

30

macro invocatione The "fsc" parameter accounts for differing sector
numbering systems, and is usually 0 or Ie The "lsc" is the last
numbered sector on a tracke When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytese No translation table is created if the
skf parameter is omitted (or equal to 0) e The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the diske Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dks M
specifies the total disk size in "bls" units e That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of Mdir" is the total number of
directory entries which may exceed 255, if desired e The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem e If
the disk is permanently mounted, then the value of cks is typically 0,
since the probability of changing disks without a restart is quite
low. The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [01
parameter is included when file compatibility is required with
versions of 1.4 which have been modified for higher density disks e
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versionse Normally, this
parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i,j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version le4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research e)

31

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF....
ENDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The DISKS macro generates n Disk Parameter Headers (OPR's),
starting at the OPR table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four
drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE
DPE0:
OPEl:
DPE2:
DPE3:

EOU
OW
OW
OW
OW

$
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSVl,ALVl
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are
generated by the ENDEF macro in the ram area following the BIOS code
and tables.

Note that if the "skf" (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a 0000H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE •
0000H, and simply returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter is present, and the (non-zero) table address is placed into
the corresponding DPHls. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is s~ecified in the
DISKDEF macro call:

XLT0: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15.21
2,8,14,20,26,6.12,18,24.4,10,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the un initialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

4C72 z

4DB0 z
013C z

BEGDAT EQU $
(data areas)
ENDDAT EQU $
DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4080H-l, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A •••• ,P) and displays
the values shown below:

< : 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Recordsl Extent
b: Recordsl Block
5: Sectors/ Track
t: Reserved Tracks

Three examples of DISKDEF macro invocations are
corresponding STAT parameter values (the last
8-megabyte system).

shown below
produces a

with
full

DISKDEF 0,1,58,,2048,256,128,128,2
<=4096, kz 512, d=128, c=128, e=256, bz16, sz58, t=2

DISKDEF 0,1,58,,2048,1024.300,0,2
<=16384, k=2048, d=300, c=0, e=128, b=16, 5=58, t z 2

DISKDEF e,1,58,,16384.512,128,128,2
r-65536, k-8192. d~128, c~128, e=1824, b=128, s=58, t=2

(All Information Contained Herein is Proprietary to Digital Research.)

33

12. SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M aDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
mUltiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BOOS information to perform the operations automatically.

Upon each call to WRITE, the BOOS provides the following
information in register C:

o
1
2

=
=
=

normal sector write
write to directory sector
write to the first sector
of a new data block

lines
your

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on your CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek."
while those related to the host disk system are prefixed by "hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and retu~ns the Disk Parameter Header
address, it does not physically selected ~he host disk'at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial trivial function of
returning the physical sector number.

The principal entry points are READ and WRITE, starting on
lIe and 125, respectively. These subroutines take the place of
previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research.)

34

disk nUmbE!r, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector
number). You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% improvement in overall respOnse.
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) l28-byte sectors. This is
primarily due, of course, to the information provided by the BOOS
which elimi.nates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital RE!Search.)

35

·,
;

APPENDIX A: THE MDS COLD START LOADER

MDS-899 Cold Start Loader for CP/M 2.9

; Version 2.0 August. 1979

testing
93409h

9
not false
false

not testing
0999h

bdose-cpmb
2
bdos1/128
25
bdoss-bdose

•

;tracks to read
;t sectors in bdos
:, on track 0
;t on track 1

;base of dos load
:entry to dos for calls
;end of dos load
;cold start entry point
;warm start entry point

;intel monitor base
;restart location for monSe
;'base' used by controller
; resul t type
;result byte
;reset controller

;loaded here by hardware

:disk status port
:low iopb address
;high iopb address
; boot swi tch
;recalibrate selected drive
;disk read function
;use end of boot for stack

0f899h
0ff0fh
078h
base+l
base+3
base+7

3009h

base
base+l
base+2
9ffh
3h
4h
100h

bias
896h+bias
1889h+bias
1690h+bias
boot+3

egu
egu
egu
egu
egu
egu
egu

egu
egu
egu
egu
egu
egu

egu
egu
egu
equ
equ

or9

if
egu
endif
if
egu
endif
egu
egu
egu
egu
egu

egu
egu
egu

·,
·,
bdos1
ntrks
bdoss
bdos0
bdos1

·,

bias

;
false
true
testing

·,

bias

dstat
ilow
ihigh
bsw
cecal
readf
stack

;

cpmb
bdas
bdose
boot
rboot

monSe
[monSe
base
rtype
rbyte
reset

0009 =

0099 =
0896 =
1880 =
1600 2

1603 =

3990

1880 :

0092 =
9931 =
9019 =
0018 =

f899 =
ff0f =
0978 =
9979 =
997b =
997f =

9978 =
0079 =
997a =
90ff =
9093 =
0004 =
0190 :

9999 z

ffff z

9999 z

·,
3900 310991

3993 db79
3095 db7b

3907 dbff

~mmb

[start:
Ixi
clear
in
in

; check
colds tart:

in
ani]nz

sp,stack;in case of call to monSa
disk status

rtype
rbyte

if boot switch is off

bsw
~3~dstartswitch on?

36

disk status
[type
lIb
2

the controller
reset ;logic cleared

;
300_ d3Jf

·,
3010 0602
3012 214230

·,
start:
;
;

3015 7d
3016 d379
3018 7e
3019 d37a
301b db78 wa i to:

m~ ~~~~30
·,

3022 db79
3024 _603
3026 f_02

clear
out

mvi
lxi

read
mov
out
mov
out
in
ani
]Z

check
in
ani
cpi

b,ntrks
h, iopb0

first/next
a,l
i10w
a,h
ihigh
dstat

~ait0

;number of tracks to read

track into cpmb

jmp boot, print message, set-up jrnps
jmp boot

parameter blocks

not testing
[start ;retry the load

testing
[monS0 ;90 to monitor if 11 or 10

not testing
[start ;retry the load

; length of iopb
;addressing next iopb
;count down tracks

;oet ready bit set
:restore
;overrun/addr err/seek/erc

:i/o complete, check status
then go to monS"

d, iopbl
d
b
start

11110b

[monS0

testing
[monS" ;90 to monitor

[byte
ready.

lxi
dad
der
jnz

in
if not
ral
ee
rar
ani

if
enz
endif
if
jnz
endif

if
ene
endif
if
joe
endif

3034 e20030

·,
;

3037 110700
303a 19
303b 05
303e e21530

·,
•,
;

303f e30016
;
;

3028 d20030

·,
302b db7b

·,
302d 17
302_ de0fff
3031 If
3032 e61e

;

37

3B42 8B iopb0: db 8Bh ; iocw, no update
3B43 B4 db readf :read function
3B44 19 db bdos0 ;t sectors to read trk B \

3B45 BB db B ; track B
3B46 B2 db 2 :start with sector 2, trk B
3B47 BBBB dw cpmb ;start at base of bdos
BBB7 = iopbl equ $-iopbB.,
3B49 8B iopbl: db 8Bh
3B4a B4 db readf
3B4b 18 db bdosl :sectors to read on track 1
3B4e Bl db 1 ; track 1
3B4d Bl db 1 ;sector 1
3B4e 8BBe dw cpmb+bdos0*128 :base of second cd
395B end

38

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

version 2.0 august, 1979

mds-8eO i/o drivers for cp/m 2.0
(four drive single density version)

copyright (c) 1979
digital research
box 579, pacific grove
california, 93950

0014 =

;
;
;

·,
vers
;
;
;

egu 20 ;version 2.0

following functions
cold start
warm start (save i/o byte)

and wboat are the same for mds)
console status
reg-a = 00 if no character ready
reg-a = ff if character ready
console character in (result in reg-a)
console character out (char in reg-c)
list out (char in reg-c)
punch out (char in reg-c)
paper tape reader in (result to reg-a)
move to track 00

con in
conout
list
punch
reader
home

perform
boot
wboot
(boot
const

or9 4a00h ;base of bios in 20k system
egu 3400h ;base of cpm ccp
egu 3c06h ibase of bdos in 20k system
egu $-cpmb ;length (in bytes) of cpm system
egu cpml/128;number of sectors to load
egu 2 :number of disk tracks used by cp
equ 0004h ;address of last logged disk
egu 0080h ;default buffer address
egu 10 ;max retries on disk i/o before e

4.00
3400 = cpmb
3e06 = bdas
16~ = cpml
002e = nsects
0002 = offset
0004 = cdisk
0080 = buff
000. = retry

;

·,·,
;

·,
;

·,·,

(the following calls set-up the io parameter bloc
mds, which is used to perform subsequent reads an
seldsk select disk given by reg-c (0,1,2 •••)
settrk set track address (0 •••• 76) for sub r/w
setsec set sector address (1, •••• 26)
setdma set subsequent dma address (initially 80h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma add res

;
;

;

;

·,·,·,
;

4.00 e3b34.
4a03 c3c34a wboote:
4.06 e3614b
4.09 e3644b
4.0c c36.4b

jump
jmp
jmp
jmp
jmp
jmp

vector for
boot
wboot
const
con in
conou t

indiviual routines

39

4aU c36d4b jmp list
4a12 c3724b jmp punch ,
4a15 c3754b jmp reader
4a18 c3784b jmp home
4alb c37d4b jmp seldsk
4ale c3a74b jmp settrk
4a21 c3ac4b jmp setsec
4a24 c3bb4b jmp setdma
4a27 c3c14b jmp read
4a2a c3ca4b jmp write
4a2d c3704b jmp listst :list status
4a30 c3b14b jmp sectran

;
maclib diskdef ;load the disk definition library
disks 4 :feur disks

4a33+: dpbase equ $;base of disk parameter blocks
4a33+824a00 dpe0: dw xlt0,0000h :translate table
4a37+000000 dw 0000h,0000h ;scratch area
4a3b+6e4c73 dw dirbuf.dpb0 idir buff,parm block
4a3f+0d4dee dw csv0.alv0 ;check, ailoe vectors
4a43+824a00 dpel : dw xltl,0000h ;translate table
4a47+000000 dw 0000h,0000h ;scratch area
4a4b+6e4c73 dw dirbuf,dpbl :dir buff,parm block
4a4f+3c4dld dw csvl,alvl ;check, alloe vectors
4a53+824a00 dpe2: dw xlt2,0000h :translate table
4a57+000000 dw 0000h,0000h ;5cratch area
4a5b+6e4c73 dw dirbuf,dpb2 :dir buff,parm block
4a5f+6b4d4c dw csv2,alv2 ; check, ailoe vectors
4a63+824a00 dpe3: dw xlt3,0000h :translate table
4a67+000000 dw 0000h,0000h iscratch area
4a6b+6e4c73 dw dirbuf.dpb3 :dir buff,parm block
4a6f+9a4d7b dw csv3,alv3 ;check, alloe vectors

diskdef 0,l,26,6,1024,243,64,64,offset
4a73+= dpb0 equ $:disk parm block
4a73+1a00 dw 26 ;sec per track
4a75+03 db 3 ;block shift
4a76+07 db 7 :block mask
4a77+00 db 0 :extnt mask
4a78+f200 dw 242 ;disk size-l
4a7a+3f00 dw 63 ;directory max
4a7c+c0 db 192 ;alloc0
4a7d+00 db 0 ;allocl
4a7e+10BB dw 16 ;check size
4a88+0200 dw 2 ;offset
4a82+= xlt0 equ $;translate table
4a82+01 db 1
4a8 3+0 7 db 7
4a8H0d db 13
4a85+13 db 19
4a86+19 db 25
4a87+05 db 5
4a88+0b db 11
4a89+11 db 17
4aBa+17 db 23
4a8b+03 db 3

40

4a8c+B9
4aBd+et
4a8e+IS
4aBfH 2
4a90HB
4a9l+0e
4a92+14
4a93+1a
4a94+06
4a95+0c
4a96+12
4a97+lB
4a9B+04
4a99+0a
4a9a+10
4a9b+l6

4a73+=
00lf+=
0010+=
4aB2+=

4a73+=
00lf+=
0010+=
4aB2+=

4a73+:
001f+=
0010+=
4aB2+=

dpbl
alsl
cssl
xltl

dpb2
als2
css2
xlt2

dpb3
als3
css3
xlt3
;
;

db 9
db 15
db 21
db 2
db B
db 14
db 20
db 26
db 6
db 12
db IB
db 24
db 4
db 10
db 16
db 22
diskdef 1,0
equ dpb0
equ als"
equ css0
equ xlt0
diskdef 2,0
equ dpb0
equ als0
equ css0
equ xlte
diskdef 3,0
equ dpb0
equ als0
equ css0
equ xlt0
endef occurs at

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

iequivalent parameters
isame allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters
;same allocation vector size
;same checksum vector size
,same translate table
end of assembly

; end of controller - independent code, the remalnl
; are tailored to the particular operating environm
; be altered for any system which differs from the

;
;

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

assume the mds system has four disk drive
0fdh ;interrupt revert port
Sfch ; interrupt mask port
0f3h ;interrupt control port
0111$1110b;enable rst o(warro boot) ,rst 7

monitor equates
0fB00h ;mds monitor
Sff9fh ;restart monS0 (boot error)
0f803h ;console character to reg-a
0f80Gh ;reader in to reg-a
"f809h ;console char from c to console 0
0f8Sch ;punch char from c to punch devic
Sf80fh ;list from c to list device
0fB12h ;eonsole status 00!ff to register

we also
equ
equ
equ
equ

rods
equ
equ
equ
equ
equ
equ
equ
equ

;
revrt
intc
icon
inte

.,

monS0
rmonS0
ci
ri
eo
po
10
csts

fB00 =
ff0f =
fB03 =
fB06 =
fB09 =
fB0e =
fB0f =
fB12 =

00fd =
00fe =
00f3 =
007e ==

41

8878 =
8878 =
8879 =
887b =

;,
base
dstat
[type
rbyte

disk
egu
equ
equ
equ

ports and
78h
base
base+l
base+3

commands
;base of disk command
;disk status (input)
;result type (input)
;result byte (input)

io ports

8879 =
887. =

.,
ilo.....
ihigh

equ
equ

base+l ;iopb low address (output)
base+2 :iopb high address (output)

;

,
signoo:

readf
writf
recal
iardy
cr
1£

tread function
;write function
;recalibrate drive
fifo finished mask
;carriage return
:line feed

message: xxk cp/m vers y.y
cr,lf,lf
'20' ;sample memory size
'k cp/m vers .
vers/10+'9' ,'.',vers mod 10+'0'
cr,lf,0

4h
6h
3h
4h
8dh
8.h

signoo message and go to ccp
mds boot initialized iobyte at 0093h)

sp,buff+80h
h,signon
prmsg ; pr int message
a ;clear accumulator
cdisk iset initially to disk a
gocpm ;go to cp/m

; pr int
(note:
Ixi
lxi
call
xr.
st.
jmp

; s1gooo
db
db
db
db
db

equ
equ
equ
equ
equ
equ

;

,

boot:
.,

8d8.8.
3238
6b21i43f
322e38
8d8.88

4.b3 318881
4.b6 219c4.
4.b9 cdd34b
4abc af
4.bd 328488
4.c8 c38f4b

4.9c
4.9f
4••1
4aad
4.b8

8884 =
8886 =
8883 =
8884 =
888d =
888. =

,
wboot:; loader on track 0, sector 1, which will be skippe
; read cp/m from disk - assuming there is a 128 byt

start.

4.c3 318888 lxi sp,buff ;using dma - thus 80 thru ff ok f

4ade cl
4.df 862c

sectors, count nsects to zero
b ;l"-error count
b,nsects

4ac6
4ac8

4ac9
4acc
4acf
4.dl
4.d4
4.d6
4.d9
4.db

0e"a
cS

818834
cdbb4b
8e88
cd7d4b
8e88
cda74b
8e82
cdac4b

wboot0:

,

mvi
push
; en ter
lxi
call
mvi
call
mvi
call
mvi
call

read
pop
mvi

c,retry
b

here on
b,cpmb
setdma
c,8
seldsk
c,8
settrk
c,2
setsec

;max retries

error .f etr ies
;set ~ma address to start of disk

;boot from drive"

;start with track"
;start reading sector 2

42

next sector
4ael
4ae2
4ae5
4ae8
4aeb
4aee
4aef
4af0
4afl
4af4
4af7
4af9

4afc
4aff
4b00
4b01
4b04
4b05
4b06
4b07
4b0a
4b0b
4b0e

e5
ede14b
e2494b
2a6c4c
118000
19
44
4d
edbb4b
3a6b4e
fela
da054b

3a6a4c
3e
4f
eda74b
af
3e
4f
cdac4b
el
05
c2e14a

[dsee:

·•

rdl:

: read
push
call
jnz
Ihld
lxi
dad
mov
mov
call
Ida
cpi
je
must
Ida
inr
mov
call
xra
inr
mov
call
pop
der
jnz

be

b
read
booterr
iod
d,128
d
b,h
e,l
setdma
ios
26
rdl
sector
iot
a
e,a
settrk
a
a
e,a
setsec
b
b
[dsee

;save sector count

iretry if errors occur
;increment drna address
;sector size
; incremented dma address in hI

;ready for call tc set dma

:sector number just read
;read last sector?

26. zero and go to next track
;get track to register a

;ready for call

;clear sector number
ito next sector
; ready for call

;recall sector count
; done?

done with the load, reset default buffer
; (enter here from cold start boot)
enable rst0 and cst?
di4b0f f3

4b10 3e12
4b12 d3fd
4b14 af
4b15 d3fe
4b17 3e7e
4b19 d3fe
4blb af
4ble d3f3

·•
gocpm:
;

IDvi
out
xra
out
IDvi
out
xra
out

a,12h
revet
a
intc
a, inte
intc
a
icon

;initialize command

;cleared
;rst0 and rst7 bits on

;interrupt control

address

4ble
4b21

018000
edbb4b

set
lxi
call

default buffer
b,buff
setdma

address to 80h

; jmp
; jmp

,

4b24
4b26
4b29
4b2e
4b2f
4b32
4b35
4b38
4b3b
4b3e

3ec3
320000
21034a
220100
320500
21063e
220600
323800
2100f8
223900

·•

;

reset
mvi
sta
lxi
shld
sta
lxi
shld
sta
lxi
shld
leave

moni tor entry
a. jmp
o
h.wboote
1 ;jmp
5
h.bdos
6
7*8
h,mon80
7*8+1

iobyte set

43

points

wboot at location 00

bdos at location 5
to mon8e {may have been chan

· previously selected disk was b. send parameter to,
4b41 3a0400 1da cdisk ; last logged disk number
4b44 H :send to ccp to log it in

,
mov c.a

4b45 fb ei
4b46 c30034 jmp cpmb

·,, error condition occurred, print message and retry
booter[:

4b49 c1 pop b ;recall counts
4b4a 0d dcr c
4b4b ca524b jz booter0

try again
4b4e c5 push b
4bH c3c94a jmp wboatS

4b52
4b55
4b58

215b4b
cdd34b
c30fff

bootere:
otherwise too many retries
lxi h,bootmsg
call prmsg
jmp [monS0 ;mds hardware monitor,

bootmsg:
4b5b 3f626f4 db '?boot',e

,
canst: :console status to reg-a

(exactly the same as mds call)
4b61 c312fS jmp csts

4b64 cd03f8
4b67 e67f
4b69 c9

conin:

;

;console character to reg-a
call ci
ani 7fh ;remove parity bit
ret

canout: ;console character from c to console out
4b6a c309f8 jmp co

:list device out
(exactly the same as mds call)
jmp 104b6d c30ff8

4b70 af
4b71 c9

list:
·,
·,
listst:

; return
xra
ret

11st
a

status

;always not ready

punch: ; punch device out
; (exactly the same as mds call)

4b72 c30cfS jmp po

4b75 c306f8

reader:

·,
;
home:

:reader character in to reg-a
(exactly the same as mds call)
jrnp ri

;move to home position

44

0000
; too large?
;leave hI =

00 seek

disk given by register c
h,0000h ;return 0000 if error
a.e
ndisks

as track
e.0
settrk

treat
mvi
jmp

;select
Ixi
mov
cpi
me

;

;
se1dsk:

210000
79
fe04
d0

0e00
e3a74b

4b7d
4b80
4b81
4b83

4b78
4b7a

;save the function
;io function

4b84 e602
4b86 32664e
4b89 79
4b8a e601
4b8e b7
4b8d ea924b
4b90 3e30

4b92 47
4b93 21684e
4b96 7e
4b97 e6ef
4b99 b0
4b9a 77

m8 ~g00
4bge 29
4b9f 29
4ba0 29
4ba1 29
4ba2 11334a
4ba5 19
4ba6 e9

ani
sta
mov
ani
ora
jz
llIvi

setdrive:
mov
Ixi
mov
ani
ora
mov

mel'
dad
dad
dad
dad
Ixi
dad
ret

10b ;00 00 for drive 0,1 and 10 10 to
dbank ito select drive bank
arC ;00, 01, 10, 11
Ib ;mds has 0,1 at 78, 2,3 at 88
a ;result 00?
setdrive
a,00110000b ;selects drive 1 in bank

b,a
hriof
a.m
11001111b ;mask out disk number
b ;mask in new disk number
m,a ;save it in iopb

~:e ;hl=disk number
h ;*2
h ; *4
h ; *8
h ; *16
d,dpbase

.d ;hl=disk header table address

·,·•
settrk: ;set track address given by e

4ba7 216a4e lxi h, iot
4baa 71 mov m.e
4bab e9 ret

;
setsec: ;set sector number given by e

4bac 216b4e Ixi h,ios
4baf 71 mov m.e
4bb0 e9 ret

sectran:
;translate sector be using table at de

4bb1 0600 mvi b,0 ;double precision sector number i
4bb3 eb xchg ;translate table address to hI
4bb4 09 dad b ;translate(sector) address
4bb5 7e mov a.m ;transleted sector number to a
4bb6 326b4e sta ios

!m g~ mo~ 1.a ;return sector number in 1
re,

setdma: ;set dma address given by regs b,e

45

utility subroutines

:may have error set

write function
c,writf
setfunc ;set to write function
waitio

mov l,c
mov h,b
shId iod
ret

; zero?

;perform read function
;may have error set in reg-a

record (assuming disk/trk/sec/dma
;set to read function

at h, I to 0

print
h
coa
conout
h
h
prmsg

message
aom
a

next disk
c,readf
setfunc
waitio

:print
mov
ora
rz
more to
push
mov
call
pop
inx
jmp

:disk
mvi
call
call
ret

;read
mvi
call
call
ret

4bbb .69
4bbc 6B
4bbd 226c4c
4bcB c9

·0
read:

4bcI BeB4
4bc3 cdeB4b
4bc6 cdfB4b
4bc9 c9 ,

·0
write:

4bca BeB6
4bcc cde04b
4bcf cdU4b
4bd2 c9 ,,,

prmsg:
4bd3 7e
4bd4 b7
4bd5 cB

·0
4bd6 e5
4bd7 4f
4bdB cd6a4b
4bdb el
4bdc 23
4bdd c3d34b

·o
,

4beB 2I6B4c
4be3 7e
4be4 e6fB
4be6 bl
4be7 77

4beB e62B
4bea 2I6b4c
4bed b6
4bee 77
4bef c9

setfunc:
; set function for next i/o (command in reg-c)

lxi h,iof ;io function address
mov a,m ;get it to accumulator for maskin
ani lllll000b ;remove previous command
ora c ;set to new command
mov m,a ;replaced in iopb
the mds-800 controller req's disk bank bit in sec
mask the bit from the current i/o function
ani 00l00000b ;mask the disk select bit
lxi h,ios ;address the sector selec
ora m ;select proper disk bank
mov m,a ;set disk select bit on/o
ret

4bU Bda

4bfB 3a664c

c,retry :max retries before perm error

the i/o function and wait for completion
intype lin rtype
inbvte ;clears the controller

,set bank flagsdbank

start
call
call

Ida

mvi

·o

rewait:
·o

,
waitio:

cd3f4c
cd4c4c

4bf2
4bf5

46

;high address
ito wait for complete

4bfb b7
4bfc 3e67
4bfe 064c
4c00 c20b4c
4c03 d379
4c05 78
4c06 d37a
4c08 c3104c

ora
mvi
mvi
jnz
out
mov
out
imp

a
a. iopb
b,iopb
iodrl
iIe.....
a,b
ihigh
wa i to

and 0ffh
she 8

;drive

izera if drive 0.1 and nz
:10w address for iopb
;high address for iopb

bank 17
:10w address to controlle

check io completion ok
call intype :ffiust be io complete (130)
00 unlinked i/o complete, 81 linked i/o comple
Ie disk status changed 11 (not used)
cpi lOb :ready status change?
jz wready

i/o error bits
inbyte

iodrl:
4c0b d389
4c0d 78
4c0e d38a

·,
4c10 cd594c waite:
4c13 e604
4clS ca104c

4cl8 cd3f4c
·,·,

4c1b fe02
4cld ca324c

;
;

4c20 b7
4c21 c2384c

;

·,
4c24 cd4c4c
4c2717
4c28 da324c
4c2b If
4c2c e6fe
4c2e c2384c

; drive
out
mov
out

call
ani
iz

must be
ora
jnz

check
call
ra1
ic
rar
ani
jnz

bank 1
ilow+10h
a,b
ihigh+10h

ins tat
lordy
waite

08 in the
a
werror

wready

111l1l10b
werror

;88 for drive bank Ie

;wait for completion
;ready?

accumulator

:some other condition, re

;unit not ready

;any other errors?

4c31 c9
read or write is ok, accumulator contains zero
ret

;

4c32
4c35

cd4c4c
c3384c

wready: ;not
call
imp

ready, treat
inbyte
trycount

as error for
;clear

now
result byte

werror: ;return hardware malfunction (crc, track, seek, e
; the mds controller has returned a bit in each pos
; of the accumulator, corresponding to the conditio
; 0 - deleted data (accepted as ok above)

1 - crc error
; 2 - seek error
; 3" - address error (hardware malfunction)

4 - data over/under flow (hardware malfunct
; 5 - write protect (treated as not ready)
; 6 - write error (hardware malfunction)

7 - not ready

47

·•·•
(accumulator bits are numbered 7 6 5 4 3 2 1 8)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable. in any case, the not ready conditio

: treated as a separate condition for later improve
trycount:
: register c contains retry count, decrement Itil z

4c38 Sd dec c
4c39 c2f24b jnz rewait ifor another try

·•,
4c3c 3e01
4c3e c9

cannot recover
mvi a,l
ret

from error
:error code

inbyte, ins tat read drive bank Be or 19
dbank
a
intyp1 ,skip to bank 10
rtype

·•·•
4c3f 3a664c intype:
4c42 b7
4c43 c2494c
4c46 db79
4c48 c9
4c49 db89 intyp1:
4c4b c9 ,
4c4c 3a664c inbYte:
4c4f b7
4c50 c2564c
4c53 db7b
4c55 c9
4c56 db8b inbYtl:
4c58 c9

4c59 3a664c instat:
4c5c b7
4c5d c2634c
4c60 db78
4c62 c9
4c63 db88 instal:
4c65 c9

intype,
1da
ora
jnz
in
ret
in
ret

1da
ora
jnz
in
ret
in
ret

1da
ora
jnz
in
ret
in
ret

rtype+lBh

dbank
a
inbYtl
cbyte

rbyte+10h

dbank
a
instal
dstat

dstat+lBh

,78 for 0,1 88 for 2.3

-
data areas (must be in ram)
db 0 ;disk bank 00 if drive 0,1

; 10 if drive 2,3

define ram areas for bdos operation

,
·•,

4c66 00 dbank:

iopb:
4c67 80
4c68 04 lof:
4c69 01 ion:
4c6a 02 iot:
4c6b 01 ios:
4c6c 8000 iod:,,,

;io
db
db
db
db
db
dw

parameter
80h
readf
1
offset
1
buff

block
;normal i/o operation
: io function, initial
:number of sectors to
:track number
:sector number
:io address

read
read

48

4c6e+=
4c6e+
4cee+
4d0d+
4d1d+
4d3c+
4d4c+
4d6b+
4d7b+
4d9a+
4daa+=
013c+=
4daa

begdat
dirbuf:
alv0:
csv0:
a1v1:
csv1:
a1v2:
csv2:
a1v3:
csv3:
enddat
datsiz

endef
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds
equ
equ
end

$
128 ~directory access buffer
31
16
31
1~
31
16
31
16
$
$-begdat

49

APPENDIX C: A SKELETAL CBIOS

skeletal cbios for first level of cp/m 2.0 altera

"bias" is address offset from 3400h for memory sy
than 16k (referred to as "b" throughout the text)

(msize-20)*1024
3400h+bias ;base of ccp
ccp+806h ;base of bdos
ccp+1600h ;base of bios
0004h ;cu[rent disk number 0=a~ ••• ,lS=p
0003h ;intel i/o byte

0014 =

0000 =
3400 =
3e06 =
4a00 =
0004 =
0003 =

·,·,
msize
;

;
;
bias
eep
bdas
bios
cdisk
iobyte

equ

equ
equ
equ
equ
equ
equ

20 ;cpjm version memory size in kilo

4a00
002e =

·,
org

nsects equ
bios ;o[igio of this program
($-ccp}/128 ;warm start sector count

;
;

4a00 c39c4a
4a03 c3a64a wboote:
4a06 e3114b
4a09 e3244b
4a0e e3374b
4aBf e3494b
4a12 e34d4b
4a15 e34f4b
4a18 e3544b
4alb e35a4b
4ale e37d4b
4a21 e3924b
4a24 e3ad4b
4a27 e3e34b
4a2a e3d64b
4a2d e34b4b
4a30 e3a74b

jump
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

vector for
boot
wboat
canst
con in
conou t
list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

individual subroutines
;cold start
:warm start
;console status
;console character in
;console character out
;list character out
ipunch character out
:reader character out
;move head to home positi
;select disk
iset track number
iset sector number
; set dma address
;read disk
;write disk
:return list status
;sector translate

;

·,·,·,
4a33 734a00 dpbase:
4a37 000000
4a3b f04e8d
4a3f ee4d70

·,
4a43 734a00
4a47 000000
4a4b f04e8d
4a4f fe4d8f

·,
4a53 734a00
4a57 000000
4a5b f04e8d
4aSf 0c4eae

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk ee
dw trans,eeeeh
dw 0000h.0000h
dw dirbf,dpblk
dw ehk00,al100
disk parameter header for disk el
dw trans,eeeeh
dw 0000h,0000h
dw dirbf,dpblk
dw ehk01,al101
disk parameter header for disk e2
dw trans,e000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk02,al102

50

,

end of fixed tables

block, common to all disks
;sectors per track
:block shift factor
; block mask
:oul1 mask
:disk size-l
;directory max
;alloc 0
ialloc 1
;check size
;track offset

sector
ag
db
db
db
db
db

translate vector

~5:5~h~h
23,3,9,15
21,2,8.14
20,26,6,12
18,24,4,10
16,22

~:~:U
9,10,11,12
13,14,15,16
17,18,19,20
21,22,23,24
25,26

(sectors,sectors
;sectors
;sectors
;sectors
;sectors
;sectors

for disk 03

parameter
26
3
7
o
242
63
192
o
16
2

parameter header
trans,0000h
0000h,0000h
dirbf,dpblk
chk03,a1l03

;disk
dw
db
db
db
dw
dw
db
db
dw
ow

disk
dw
dw
dw
dw

,
dpblk:

·,

·,,

·,

4a8d la00
4a8f, 03
4a90 07
4a91 00
4a92 f200
4a94 3f00
4a96 c0
4a97 00
4a98 1000
4a9a 0200

4a63 734a00
4a67 000000
4a6b f04c8d
4a6f lc4ecd

tgi~ ~~959g trans:
4a7b 170309
4a7f 150208
4a83 141a06
4a87 121804
4a8b 1016

,,
boot:

4a9c af
4a9d 320300
4aa0 320400
4aa3 c3ef4a ·,

wboot:
4aa6 318000
4aa9 Seee
4aab cd5a4b
4aae cd544b

·•
4abl 062c
4ab3 0e00
4ab5 1602

;
;

4ab7 210034
loadl:

4aba c5
4abb d5
4abc e5
4abd 4a
4abe cd924b
4acl cl

individual subroutines to perform each function
;simp!est case is to just perform ~arameter ioiti
xra a izero in the accum
sta iobyte iclear the iobyte
sta cdisk ;select disk zero
jrnp gocprn ; initialize and go to cp/

; simplest case is to read the disk until all sect
lxi sp,80h ;use space below buffer f
rnvi c,0 ;select disk 0
call seldsk
call home ;90 to track 00

mvi b,nsect~ ;b counts t of sectors to
mvi c,0 ;c has the current track
mvi d,2 ;d has the next sector to
note that we begin by reading track 0, sector 2 s
contains the cold start loader, which is skipped
lxi h,ccp ;base of cp/m (initial 10
;load one more sector
push b ;save sector count, current track
push d ;save next sector to read
push h ;save dma address
mov c,d ;get sector address to register c
call setsec ;set sector address from register
pop b ;recall dma address to b,c

51

4ac2 cS
4ac3 cdad4b

4ac6 cdc34b
4ac9 feee
4acb c2a64a

4ad9 14
4ada 7a
4adb felb
4add daba4a

4be9 fb
4bea 3ae4ee
4bed 4f
4bee c3ee34

of next

track set, sector set, dma add res

:enable the interrupt system
:get current disk number
;send to the ccp
;go to cp/m for further processin

:any errors?
:retry the entire boot if an erro

: for jmp to bdos
:bdos entry point
:address field of jump at 5 to bd

:replace on stack for later recal
:set dma address from b,c

to next sector
:recall dma address
:dma=dma+128
;new dma address is in h,l
:recall sector address
:recall number of sectors remaini
:sectors=sectors-l
:transfer to cp/m if all have bee

track, go to next track
:begin with first sector
:track=track+l

b,80h :default dma address is 80h
setdma

5
h,bdos
6

cdisk
c.a
ccp

a,0c3h :c3 is a jmp instruction
" :for jmp to wboot
h,wboote :wboot entry point
1 :set address field for jmp at 0

current
d,l
c

b
setdma

set to 0,
read
eeh
wboot

register state, and change tracks
b
d
h
settrk :track address set from register
h
d
b
loadl :for another sector

sectors remain to load, check for track chan
d
a,d :sector:27?, if so, change tracks
27
loadl :carry generated if sector<27

lxi
call

mvi
sta
lxi
shld

more
inr
mov
cpi
jc

sta
lxi
shld

ei
lda
mov
jmp

save
push
push
push
call
pop
pop
pop
jmp

end of load operation, set parameters and go to c

end of
mvi
inr

drive
call
cpi
jnz

push
call

no error, move
pop h
lxi d,l28
dad d
pop d
pop b
dec b
jz gocpm

·,
·,

·,
,

,,

·,

,

,

gocpm:

,,

,

,,

l6el
ec

4aef 3ec3
4afl 32eeee
4af4 2le34a
4af7 22elee

4afa 32e5ee
4afd 2le63c
4bSe 22e6ee

4be3 elSeee
4be6 cdad4b

4ae3 cS
4ae4 d5
4aeS eS
4ae6 cd7d4b
4ae9 el
4aea dl
4aeb cl
4aec c3ba4a

4ae0
4ae2

4ace el
4acf llSeee
4ad2 19
4ad3 dl
4ad4 cl
4ad5 e5
4ad6 caef4a

52

;,,
·,,,
canst:

4bll
4b21 3e00
4b23 c9 ,

conin:
4b24
4b34 e67f
4b36 c9 ,

conout:
4b37 79
4b38
4b48 c9

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with 5
to insert your own code

;console status, return 0ffh if character ready,
ds 10h :space for status subroutine
mvi a,00h
ret

;console character into register a
ds 10h ispace for input routine
ani 7fh ;strip parity bit
ret

;console character output from register c
mav a,e ;get to accumulator
ds 10h ;space for output routine
ret

4b49 79
4b4a c9

;
1 ist: :list character

mav a,c
ret

from register c
;character to register a
:ou11 subroutine

4b4b af
4b4c c9

4b4f 3ela
4b51 e67f
4b53 c9

character
a,lah
7fh

character from register c
a,c ;character to register a

;null subroutine

ready)

into register a from reader devic
;enter end of file for now (repla
;remember to strip parity bit

status (0 if not ready, 1 if
:0 is always ok to return

list
a

; return
xra
ret

;punch
mov
ret

;read
mvi
ani
ret

;
listst:

·,
punch:

,,
reader:

79
c9

4b4d
4b4e

;

·,,
·,,

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

4b54 0e00
4b56 cd7d4b
4b59 c9

;move to the track 00 position of current drive
translate this call into a settrk call with param
mvi c,0 ;select track 0
call settrk
ret ;we will move to 00 on first read

4b5a
4b5d
4b5e
4b61

210000
79
32ef4c
fe04

,
home:

,
seldsk: ;select

lxi
mov
sta
cpi

disk given by register c
h,0000h :error return code
a,c
diskno
4 ;must be between 0 and 3

53

:no carry if 4,5, ••.
in the proper range

:space for disk select
disk parameter header address

number is
10
proper
diskno
I,a :l=disk number ~,1,2,3

h,0 :high order zero
h ; *2
h ; *4
h ; *8
h ;*16 (size of each header)
d,dpbase
d ;hl=.dpbase(diskno*16)

rnc
disk
ds
compute
Ida
mov
mvi
dad
dad
dad
dad
lxi
dad
ret

;

·,
4b6e 3aef4c
4b71 6f
4b72 2600
4b74 29
4b75 29
4b76 29
4b77 29
4b7B 11334a
4b7b 19
4b7c c9

4b63 d0

4b64

4b7d 79
4b7e 32e94c
4bBl
4b91 c9

4b92 79
4b93 32eb4c
4b96
4ba6 c9

;
settrk:

·,
setsec:

;set
mov
sta
ds
ret

;set
mov
sta
ds
ret

track given by register c
a,e
track
10h :space for track select

sector given by register c
a,c
sector
10h ;space for sector select

b
I,m
h,0

4ba7
4baB
4ba9
4baa
4bac

eb
09
6e
2600
c9

;
sectran:

; translate
; translate
xchg
dad
mov
IDvi
ret

the sector given by be
table given by de

:hl=.trans
;hl=.trans(sector)
:1 = trans(sector)
:hl= trans(sector)
;with value in hI

using the

4bad 69
4bae 60
4baf 22ed4c
4bb2
4bc2 c9

;
setdma: ;set

mov
mov
shld
ds
ret

dma address given by registers band c
l,e ;low order address
h,b ;high order address
dmaad ;save the address
10h ;space for setting the dma addres

4bc3
4bd3 c3e64b

;
read:
·,·,

;perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write)
ds 10h :set up read command
jrnp waitio :to perform the actual i/o

4bd6

·,
write: :perform a write operation

ds 10h ;set up write commanu
;
waitio: ;enter here from read and write to perform the ac

operation. return a 0~h in register a if the ope
properly, and 01h if an error occurs during the r

54

track: ds
sector: ds
dmaad: ds
diskno: ds

the remainder of the cbioE is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available.
however, between "begdat" and "enddat").

in this case,

ds 256
IDvi a,1
ret

we have saved the disk number in 'd
the track number in 'track I (0-76
the sector number in . sector I (1
the dma address in 'dmaad' (0-655
;space reserved for i/o drivers
;error condition
;replaced when filled-in

:two bytes for expansion
:two bytes for expansion
;direct memory address
;disk number 0-15

area for bdOs use
;beginning of data area
;scratch directory area
;allocation vector 0
;allocation vector 1
;allocation vector 2
;allocation vector 3
; check vector 0
;check vector 1
;check vector 2
;check vector 3

2
2
2
1

ram
$
128
31
31
31
31
16
16
16
16

se ra tch
egu
ds
ds
ds
ds
ds
ds
ds
ds
ds

;

;

·,

·,·
,

begdat
dirbf:
a1100,
a1101 ;
a1102:
a 110 3,
chk00:
ch k01:
ch k0 2:
chk03:

·,

4ce9
4ceb
4ced
4cef

4be6
4ce6 3e"1
4ce8 c9

4cf0 =
4cf0
4d70
4d8f
4dae
4dcd
4dec
4dfc
4e0c
4elc

4e2c =
013c =
4e2c

;
enddat
datsiz

egu
equ
end

$ iend of data area
$-begdat;size of data area

55

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

combined getsys and putsys programs from Sec 4.
Start the programs at the base of the TPA

0199

9914 ~ msize

org

equ

9U9h

29 : size of cp/m in Kbytes

; Mbias· is the amount to add to addresses for > 29k
; (referred to as Mb M throughout the text)

9999 ~

3499 =
3c99 ~

4a99 =

bias
ccp
bdos
bios

equ
equ
equ
equ

(msize-20) *1024
3499h+bias
ccp+9899h
ccp+1699h

getsys programs tracks 0 and 1 to memory at
3889h + bias,

•,,
·,,,
·,,
gstart:

0199 318933
0193 218933
9196 9699

rd$trk:
9198 ge91

rd$sec:
919a cd9993
9Ud 118999
9119 19
9111 9c
9112 79
9113 felb
9115 da9a91

register
a
b
c
d,e
h,l
sp

lxi
lxi
mvi

mvi

call
lxi
dad
inr
mov
cpi
jc

usage
(scratch register)
track count (9 ••• 76)
sector count (1 •.. 26)
(scratch register pair)
load address
set to stack address

· start of getsys,
sp, ccp-0080h · convenient plac,
h,ccp-9989h set initial loa
b.9 · start with trac,, read next track
c,l · each track star,

read$sec · get the next se,
d,128 , offset by one s
d · (hl=hl+128),
c next sector
a.c fetch sector nu
27 and see if la
[dsee <, do one more

; arrive here at end of track, move to next track

9118 94 inr b · track = track+l,
9119 78 mov a,b · check for last,
911a fe92 cpi 2 , track = 2 ?
9Hc da9891 jc rd$trk · <, do another,

· arrive here at end of load, halt for lack of anything b,

911f fb ei
9129 76 hIt

56

.,.,
putsys program, places memory image starting at
3880h + bias back to tracks 0 and 1
start this program at the next page boundary

6266 org ($+0166h) and 6ff06h

put$sys:
6266 316633 lxi sp,ccp-6666h · convenient plac,
6263 216633 lxi h,ccp-6666h start of dump
6266 6666 IDvi b,6 · start with trac,

wr$'trk:
6266 6e61 mvi c,l · start with sect,

wr$sec:
626a cd6664 call write$sec · write one secto,
626d 116666 lxi d ,126 : length of each
6216 19 dad d · <h1>=<h1> + 126,
6211 6c inr c · <c> = <c> + 1,
6212 79 mov a,c see if
6213 fe1b cpi 27 · past end of t,
6215 da6a62 jc wr$sec no, do another

f arrive here at end of track, move to next track

6216 64
6219 76
621a fe62
621c da6662

inr
mov
cpi
jc

b
a,b
2
wr$trk

track = track+l
see if

last track
; no, do another

62lf fb
6n6 76

done with putsys, halt for lack of anything bette

ei
hlt

user supplied subroutines for sector read and write

move to next page boundary

6366 org

read$sec:
; read the next sector
: track in ,
; sector in <c>
; drnaaddr in <hI>

6366 c5
6361 e5

push
push

b
h

6362
; user defined read operation goes here

ds 64

6342 el
6343 cl

pop
pop

h
b

57

0344 c9 ret

0400 org ($+0100h) and 0ff00h . another page bo,

wr i te$sec:

. same parameters as read$sec,

0400 c5 push b
0401 e5 push h

user defined write operation goes here
0402 ds 64

0442 e1 pop h
0443 c1 pop b
0444 c9 ret

1 end of getsys/putsys program

0445 end

58

0000

0014 =

0000 =
3400 =
4a00 =
0300 =
4a00 =
1900 =
0032 =

APPENDIX E: A SKELETAL COLO START LOADER

: this is a sample cold start loader which. when modified
: resides on track 00, sector 01 (the first sector on the
; diskette). we assume that the controller has loaded
: this sector into memory upon system start-up (this pro
; gram can be keyed-in, or can exist in read/only memory

beyond the address space of the cp/m version you are
running). the cold start loader brings the cp/m system

; into memory at ~loadpk (3400h + ·'bias k
). in a 20k

; memory system, the value of "bias" is 9000h, with large
; values for increased memory sizes (see section 2). afte

loading the cp/m system, the clod start loader branches
; to the "boot" entry point of the bios, which begins at
; "bios" + "bias." the cold start loader is not used un
: til the system is powered U9 again, as long as the bios
: is not overwritten. the origin is assumed at 0000h, an

must be changed if the controller brings the cold start
: loader into another area, or if a read/only memory area
: is used.

org 0 base of ram in cp/m

msize egu 20 . min mem size in kbytes,

bias egu (msize-20) *1024 offset from 20k system
ccp egu 3400h+bias base of the ccp
bios egu ccp+l600h base of the bios
biosl egu 0300h ; length of the bios
boot egu bios
size egu bios+biosl-ccp ; size of cp/m system
sects egu size/l28 ; t of sectors to load

begin the load operation

0000 010200
0003 1632
0005 210034

cold:
lxi
mvi
lxi

b,2
d,sects
h,ccp

: b=0, c=sector 2
: d=i sectors to load
: base transfer address

Isect: ; load the next sector

: insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,

; into the address given by <hI>

; branch to location ·cold· if a read error occurs

59

,,.,,,

.**.*****.* ••••••• ** •••*******.****.*** ••••••••••
•
* user supplied read operation goes here .••
•
***************.*********************************

0008 e36b00
000b

jmp
ds

past$pateh
60h

: remove this when patche

o 06b 15
006e ea0Ua

past$pateh:
; go to next

dec
jz

sector if
d
boot

load is incomplete
; sects=sects-l
; head for the bios

.,, more sectors to load

; we aren't using a stack. so use <sp> as scratch registe
; to hold the load address increment

006f 318000
0072 39

0073 0e
0074 79
0075 felb
0077 da0800

lxi
dad

inr
mov
cpi
je

sp,128
sp

e
a,e
27
lsect

; 128 bytes per sector
, <hI> = <hI> + 128

; sector = sector + 1

; last sector of track?
; no, go read another

; end of track, increment to next track

007a 0e01
007e 04
007d e30800
0080

mvi
inr
jmp
end

e,l
b
lsect

60

sector = 1
; track = track + 1
; for another group
; of boot loader

APPENDIX F: CP/M DISK DEFINITION LIBRARY

the value of ~begdatM at the end of assembly defines t

CP/M 2.0 disk re-definition library

each parameter-list-i takes the form
dn,ise,lse, [ski] ,bls,dks,dir,cks,ofs, [0]

CP/M logic~l disk drives are defined using the
macros given below, where the sequence of calls
is:

drive CP/M system is defined by
4
0.1.26,6.1024.243,64.64.2
o
3
dsk+l
%dsk,e

is the disk number 0,1, ... ,0-1
is tile first sector number (usually 0 or 1)
is t~e last sector number on a track
is Of tiona I "skew factor" for sector t:ranslate
is tne data block size (1024.2048 •.••• 16384)
is tne disk size in bls increments (word)
is tnE number of directory elements (word)
is the number of dir elements to checksum
is the number of tracks to skip (word)
is an optional 0 which forces 16K/dirE~ctory en

n
parameter-list-e
parameter-list-l

parameter-list-n

a standard four
disks
diskdef

dsk set
rept

dsk set
diskdef
endm
endei

diskdef
endef

where
dn
fsc
lsc
skf
bls
dks
dir
cks
ofs
10]

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=0.1 •..• ,0-1)

for convenience, the form
dn,dm

defines disk dn as having the same characterif~tics as
a previously defined disk dm.

diskS
diskdef
diskdef

Copyright (cl 1979
Digital R~~earch

Box 579
Pacific Grove, CA
93950

6:
7 :
8: ;
9: ;

4 :
5: ;

3 :

1 :
2: ;

10:
11:
12 :
13: ;
14: ;
15: ;
16 :
17:
18:
19 :
20:
21: ;
22:
23:
24:
25:
26:
27: ;
28: ;
29:
30:
31: ;
32: ;
33:
34: ;
35:
36:
37:
38:
39: ;
40:
41: ;
42: ;
43:
44:
45:
46: ;
47: ;
48: ;
49: ;
50: ;
51: ;
52: ;
53: ;

61

,
ddb

,
ged

dsknxt

gcdx
gedr

blocks

comment

comment

header list
;translate table
;scratch area
idir buff,parm block
;check, alloe vectors

;disk parm block

;:for later reference
;base of disk parameter
elements

dn
$

data,comment
a dw ste.tement
data

data, comment
a db statement
data

dn
a single disk

xlt&dn,0000h
0000h,0000h
d i r bu f, dpb&dn
csv&dn,alv&dn

macro
define
db
endm

macro
define
dw
endm

macro
equ
endm

macro nct
define nd disks
set oct
equ $
generate the nd
set i:i
rept nd
dskhdr %dsknxL
set dsknxc+l
endrn
endm

macro m,n
greatest common divisor of m,n
produces value gcdn as result
(used in sector translate table generation)
set m ;;variable for m
set n ;;variable for n
set " ;;variable for r
rept 65535
set gcdm/gcdn
set gcdm - gcdx*gcdn
if gcdr=0
exitm
endif

beginning of the uninitialize ram area above the bios,
while the value of "enddat" defines the next location
following the end of the data area. the size of this
area is given by the value of "datsiz" at the end of t
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small bio
5 ize.

macro
define
dw
dw
dw
dw
endm

.., ,
dsknxt

,
disks

; ;
dpe&dn:

.,
dskhdr

54: ,
55: ;
56: ;
57: ,
58: ;
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71: ;,
12: ndisks
73: dpbase
74:
75:
76:
77 :
78:
79:
80:
81: ;
82: dpbhdr
83: dpb&dn
84:
85:
B6:

87: "
BB:
89:
9": ;
91: ddw
92: ;;
93:
94:
95:
96:
97: ;;
98: ;;
99: ;;

100: gedm
101: gedn
102: gedr
103:
104:
105:
106:
107:
108:

62

in last position

mask byte
;;number of kilobytes/block

from right with l's

[01
k16

s3me as previous fsc
;~auivalent oarameters
:same allocation vector size
:same checksum vector size
:same translate table

lsc-(fsc) ;;sectors 0 ..• secmax
secmax+l::number of sectors
(dks)/8 ;;size of allocation vector
(dks) mod oj ne 0
a1s&dn+l

qedn
gedr

double byte 11location
(dks) > 256
(extmsk shr 1)

optional
not nul
kl6

set
set
endm
endm

macro dn,fsc.lsc,skf,bls,dks~dir,cks.bfs.k16

generate the set statements for later tables
if nul lse
current disk dn
equ dpb&fsc
equ als&fsc
equ css&fsc
equ xlt&fsc
else
set
set
set
if
set
endif
set (cks)/4 ijnumber of checksum elements
generate the block shift value
set bls/128 jjnumber of sectors/block
set 0 ;jcounts right 0'5 in b!kval
set 0 ;;£iI15 with l's from right
re?t 16 ;;Jnce for each bit ~osition

if blkval=l
exitm
endif
otherwise. high ord~r 1 not found yet
set b1kshf+l
set (blkmsk shl 1) or 1
set blkval/2
endm
generate the extent
set bls/1024
set " ;;fi11
[ept 16
if blkval:l
exitm
endif
otherwise more to shift
set (extmsk shl 1) or 1
set blkval/2
endm
may be
if
set
endif
may be
if
set
endif
now generate directory reservation bit vector
set dir ;;1 remaining to process

109: gcdm
110: gcdn
111:
112:
113 :
114: diskdef
115: ;;
116 :
117: "
118: dpb&dn
119: als&dn
120: css&dn
121: xlt&dn
122:
123: secmax
124: sectors
125: als&dn
126:
1'27: als&dn
128 :
129: css&dn
1313: "
131: blkval
132: blkshf
133: blkmsk
134:
135 :
136 :
137 :
138: "
139: blk shf
140: blkmsk
141: blkval
142:
143: .,
144: blkval
145: extmsk
146 :
147:
148:
149 :
150: "
151: extmsk
152: olkval
153:
154: "
155:
156: extmsk
157:
158: ;;
159:
160: extmsk
161:
162: j;

163: dirrem

63

block
loop

entries per
l's on each

ino xlate taole

;no xlate table

; ; nUlftber of
;;fill with

= 8

nelts-1
nelts = "

nxtsec+ (skf)
nxtser)= sectors
nxtsec-scctors

%nxtsec+(fsc)

skf
8

bls/32
8
16
dirrem=0

set
set
rept
if
exi tm
endif
not complete, iterate once again
shift right and add 1 high order bit
set (dirblk shr 1) or 8000h
if dirrem > dirbks
set dirrem-dirbks
else
set
endif
endm
dpbhdr dn ; ;gerierate equ $
ddw %sectcrs,<;sec per track>
ddb %blkshf.<,blcck shift>
ddb %blkmsk,<:blc.ck mask>
ddb %extmsk,<;e~tnt mask>
ddw %(dks)-l,<:oisk size-I>
ddw %{dir)-l,<:airectory max>
ddb %dirblk shr 8,<;alloc~>

ddb %oirbik ana 0ffh,<:allocl>
ddw %(cks)/4,<:check size>
ddw %ofs,<;offset>
generate the translate table, if requested
if nul skf
equ 0
else
if
egu
else
generate the translate taole
set " ; iilext sector to fill
set ~ ;;fficves by one on overflow
gcd %sectors,skf
gcdn = gcd(sectors,skew)
set sectors/gcdn
neltst is number of elements to generate
before we overlap orevious elements
set neltst ;i~ounter

equ $; translate table
rept sectors ;;once for each sector
if sectors < 256
ddb %nxtsec+(fsc)
else
ddw
endif
set
if
set
endif
set
if

164: dirbks
165: dirblk
166:
167:
168 :
169:
178: "
171: ;;
172: dirblk
173:
174: dirrem
175 :
176: dirrern
177:
178:
179:
188:
lal:
182:
183:
184:
185:
186:
187:
180:
189:
1913: ;;
191:
192: xlt&dn
193 :
194:
1~5: xlt&dn
196:
197: "
198: nxtsec
199: nxtbas
280:
281: "
202: neltst
2e3: "
204: ;;
205: nelts
206: xlt&dn
287 :
288:
289:
218:
211:
212 :
213: nxtsec
214:
215: nxtsec
216:
217: nelts
210:

64

forces hex record

jdirectory access buffer

$
$-begdat
this point

j;end of nul fac test
jjend of nul bis test

nxtbas+l
nxtbas
neltst

Ib,dn,val
Ib&dn, %val&dn

lab, space
space

set
set
set
endif
endm
endif
endif
endm

macro
generate the nec~ssary ram data areas
equ $
ds 128
set €I
rept ndisks j;once for eacn disk
Ids alv,%dsknxt,als
Ids csv,%dsknxt,css
set dsknxt+1
endm
equ
equ
db 0 at
endm

macro
defds
endm

macro
ds
endm

219: nxtbas
220: nxtse<..
221: nelts
222:
223:
224:
225:
226:
227: ;
228: defds
229: lab:
230 :
231: ;
232: lds
233:
234:
235:
236: endef
237: j;

238: begdat
239: dirbuf:
240: dsknxt
241:
242 :
243:
244: dsknxt
245:
246: enddat
247: datsiz
248: ;;
249:

65

APPENDIX G: BLOCXING AND DEBLOCKING ALGORITHMS.

*
*

Sector Deblocking Algorithms for CP/M 2.g

.k_•• _•• _. _
•
· * *•
· *•

4: ;.
5: ;***

3:

1:
2:

*

*

*
*
*

*

*

*

*
*

allocated
directory
unallocated

to
to
to

;write
;write
;write

right one position

o
1
2

not I, shift
@y she 1
@x + 1

CP/M to host disk constants

BOOS constants on entry to write

equ
equ
equ

The BOOS entry points given below show the
code which is relevant to deblocking only.

utility macro to compute sector mask
macro hblk
compute log2(hblk), return @x as result
(2 ** @x = hblk on return)
set hblk
set "
count right shifts of @y until = 1
eept 8
if @y = 1
exitm
endif
@y is
set
set
endm
endm

wrall
wrdir
wrual

·•.***•
· *•
· *•
· *•.***•

blksiz equ 2048 ;CP/M allocation size
hstsiz equ 512 ;host disk sector size
hstspt equ 20 ;host disk sectors/trk
hstblk equ hstsiz/128 ;CP/M sects/host buff
cpmspt equ hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-l :sector mask

smask hstblk :compute sector mask
secshf equ @x ,log2(hstblk)

•.***•
· *•.*•
· *•
· *•.***•

· .• •

·•.kk _

•
· *•
· *•
· *•
.k ._._. _

•

·.• •

·.• •

@y
@x

·.• •

@y
@x

·•
8: smask
7: ;
6 :

9:
10 :
11:
12 :
13:
14 :
15 :
16 :
17:
18:
19:
20:
21 :
22:
23:
24:
25:
26:
27:
28:
29:
30:
31 :
32:
33:
34 :
35:
36:
37:
38:
39:
40 :
41 :
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

66

go here
block base

; sector to seek

; tr ack to seek

;multiply by 16

iselected disk number
;seek disk number
:disk number to HL

:base of parm block
;hl=.dpb(eurdskl

coded tables
:disk param

boot to initialize
;0 to accumulator
;host buffer inactive
;clear unalloc count

number Be

by registers Be

given by Be

system

or hand

d,dpbase
d

macro,
$

disk
a,e
sekdsk
l,a
h,8
4
h

here on
a
hstact
unacnt

dma address
h,b
l,e
dmaadr

sector given by register c
a,c
seksec

track given
h,b
l,e
sektrk

;set
mov
mov
shld
ret

:set
mov
sta
ret

;set
mov
mov
shld
ret

:enter
xra
sta
sta
ret

:select
mov
sta
mov
mvi
rept
dad
endm
lxi
dad
ret

DISKDEF
equ

;
setsec:

:
seldsk:

;
dpbase
:
boot:
wboat:

54:
55:
56:
57:
58:
59:
68:
61:
62:
63:
64:
65:
66:
67:
68:
69:
78:
7l :
72:
73:
74 :
75:
76:
77: :
78: settrk:
79:
88:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90: ;
91: setdma:
92:
93:
94:
95:
96:
97: :
98: sectran:
99: ;translate sector

100: mav h,b
101: mov l,e
102: ret
183:

67

•

•
•
•
•

= unacnt-l

unallocated?
for unalloc

operation
read data

;treat as unalloc
ito perform the read

;read
;must

;write
; check

;same disk?

;skip if not

;sekdsk = unadsk?
;skip if not

CP/M sector
;0 to accumulator
;not a read operation
;write type in c

unallocated sector
;any unalloc remain?

CP/M sector

to

records remain
;unacnt

for write
unacnt
a
ailoc

the selected
a
[eadop
a,c
wrtype
wrual
chkuna

the selected
a,l
[eadop
rsflag
a,wrual
wrtype
rwoper

unallocated
a
unacnt
sekdsk
h,unadsk
m
alloc

;read
mvi
sta
sta
mvi
sta
jmp

The WRITE entry point takes the place of
the previous BIOS defintion for WRITE.

;check
Ida
ora
jz

disks are the same

write to unallocated, set parameters
mvi a,blksiz/128 ;next unalloc recs
sta unacnt
Ida sekdsk ;disk to seek
sta unadsk ;unadsk = sekdsk
Ihld sek trk
shld unatrk ;unatrk = sectrk
Ida seksec
sta una sec ;unasec = seksec

;write
xra
sta
mov
sta
cpi
jnz

more
dcr
sta
Ida
lxi
cmp
jnz

read:

.k_ ••• •• __ .* •• _._.* __ ._ .._._. ._...._._. _
,
• • •,
:* The READ entry point takes the place of *
;* the previous BIOS defintion for READ. *

,
chkuna:

·,.***,
• •,
• •,
• •,
• •,
.***,
write:

• •,
.***,

104 :
105:
106:
107:
108:
109 :
110:
111:
112:
113:
114 :
115:
116 :
117 :
118 :
119 :
120:
121:
122 :
123:
124 :
125:
126:
127:
128:
129:
130 :
131 :
132:
133:
134:
135:
136 :
137:
138:
139:
140:
141:
142:
143:
144 :
145 :
146:
14 7:
148:
149:
150:
151 :
152:
153:
154:
155:
156:
157: ;
158:

68

.**************************-**************************,
*
*
*

pre-read

unatrk+l

= 0

= 0
right

ialways becomes 1

;host sector to seek

;host active flag

;unatrk =

icarry
;shift

;unasec

;seksec = unasec?
;skip if not

;sektrk = unatrk?
;skip if not

:same sector?

the read/write
i zero to accum
ino errors (yet)
icompute host sector

unnecessary read
:0 to accumulator
;rsflag = 0
ito perform the write

record, requires
; 0 to accum
;unacnt = 0
; 1 to accum
;rsflag = 1

sector for future ref
;unasec = unasec+l
tend of track?
;count CP/M sectors
;skip if no overflow

as

track

perform

sekhst

unallocated
a
unacnt
a
[sflag

h,unatrk
sek trkcrnp
alloe

here to
a
erflag
seksec
secshf
a

found, mark
a
[sflag
rwoper

host sector?
h,hstact
a ,m
m,l

move to next
m
a,m
cpmspt
noovi

are the same
seksec
h,unasec
m
alloe

an

;enter
xra
sta
Ida
rcpt
ora
rar
endm
sta

active
lxi
mov
mvi

Common code for READ and WRITE follows

ioot
xra
sta
inr
sta

overflow to next
mvi m,O
Ihid unatrk
inx h
shld unatrk

;match
xra
sta
jmp

tracks
Ida
lxi
cmp
jnz

lxi
call
jnz

match,
·i or
mov
cpi
jc

rwope r:

,
.************************.~.**************************,
· *,
· *,
· *,

159:
160:
161:
162: ;
163: ;
164:
165:
166:
167:
168:
169:
170 :
171:
172:
173:
174: ;
175: ;
176 :
177:
178:
179:
180: ;
181: naovf:
182:
183:
184:
185:
186: ;
187: a11oc:
188:
189:
190:
191:
192:
193 :
194:
195 :
196:
197:
198 :
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209: ;
210: ;
211:
212 :
213 :

69

track, same buffer?

the host buffer

same as seek buffer?

disk, same track?
h,hsttrk
sek trkcmp
nomatch

,

write

;skip if match

;need to read?

~was it already?
;£i11 host if not

;hl = host address
;now in DE
,get/put CP/M data
:length of move

;clear host buff

,yes, if 1
;0 to accum
;no pending

;sektrk : hsttrk?

;sekhst ~ hstsec?

:same disk?
;sekdsk ~ hstdsk?

buffer
:mask buffer number
;least signif bits
;ready to shift
;double count
;shift left 7

correct sector
;host written?

buffer address

not

from

dmaadr
c.128

disk, but
hstwrt
a
writehst

a
f Uhst

relative host
d,hstbuf
d

data to or
sek sec
secmsk
l,a
h,0
7
h

have to fill
sekdsk
hstdsk
sek trk
hsttrk
sekhst
hstsec
rsflag
a
readhst
a
hstwr t

buffer active,
sekdsk
h,hstdsk
m
nomatch

disk. same
sekhst
h,hstsec
m
match

;COP¥
lda
ani
mov
mvi
rept
dad
endm
hI has
lxi
dad
xchg
lhld
mvi

;may
lda
sta
lhld
shld
lda
sta
lda
ora
cnz
xra
sta

host
lda
lxi
cmp
jnz

same
lxi
call
jnz

ora
jz

same
lda
lxi
cmp
jz.,

nomatch:
;proper
lda
ora
cnz.,

fUhst:

214 :
215:
216:
217:
218:
219 :
220:
221:
222:
223: ,
224:
225:
226:
227: ;
228:
229 :
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241 :
242:
243:
244:
245:
246:
247:
248:
249:
250:
251 :
252:
253: ,
254: match:
255:
256:
257:
258:
259:
260:
261:
262:
263: ;
264:
265:
266:
267:
268:

,
.***,

*

*
*

HL is dest
character

ito dest

ilOap 128 times

source,
isource

directory write
;eerors?
;skip if so
;0 to accum
;buffer written

;low byte compare
;same?
;return if not

high Is

to/from host buffer
;write type
ito directory?
;io case of errors
ino further processing

;sets flags

buffer for

equal, test

a
hstwrt
writehst
er flag

m

h,sektrk
d
m

host
a

.unatrk or .hsttrk, compare with sektrk

has been moved
wrtype
wrdie
er fl a9

bytes
d
h
d

utility subroutine for 16-bit com?are

clear
ora
rnz
xra
sta
call
Ida
ret

;e initially 128, DE is
Idax d
iox d
mav m,a
iox h
dec c
jnz rwmove

data
Ida
cpi
Ida
rnz

Ida readop ;which way?
ora a
jnz rwmove ;skip if read,, write operation, mark and switch direction
mvi a,l
sta hstwrt ~hstwrt = 1
xchg ~source/dest swap

rwmove:

sektrkcmp:
;HL =
xchg
lxi
Idax
cmp
rnz
low
inx
inx
Idax
cmp
ret

· *,
· *,
· *,
.***,

269:.
270:
271:
272:
273:
274:
275:
276:
277: ,
278:
279:
280:
281:
282:
283:
284:
285:
286: ,
287: ;
288:
289:
290:
291:
292:
293: ,
294:
295:
296:
297:
298:
299:
300:
301 :
362:
303:
304:
305 :
306 :
307:
308:
309:
310:
311 :
312:
313:
314: ,
315:
316:
317:
318:
319 :
320: ,

71

,
readhst:

;hstdsk = host disk i, hsttrk = host track i.
;hstsec = host sect t. read "hstsiz" bytes
;into hstbuf and return error flag in erflag.
ret

•
•

•
•

•
•

performs the physical write to
disk, READHST reads the physical

WRITEHST
the host
disk.

Unitialized RAM data areas

.*** •• ******* •• ******************-********************•
• • ••
• ••
• ••
• ••
• ••.***•
writehst:

;hstdsk = host disk i, hsttrk = host track i,
:hstsec = host sect #. write "hstsiz" bytes
;from hstbuf and return error flag in erflag.
;return erflag non-zero if error
ret

sekdsk: ds 1 ;seek disk number
sektrk: ds 2 ;seek track number
seksec: ds 1 ;seek sector number

hstdsk: ds 1 ;host disk number
hsttrk: ds 2 ;host track number
hstsec: os 1 ;host sector number

sekhst: ds 1 ; seek shr secshf
hstact: ds 1 ;host active flag
hstwrt: ds 1 :host written flag

unacnt: ds 1 ;unalloc rec cnt
unads k: ds 1 ;last unalloc disk -
unatrk: ds 2 ;last unalloc track
unasec: ds 1 ;last unalloc sector

erflag: ds 1 :error reporting
rsflag: ds 1 :read sector flag
readop: ds 1 , 1 if read operation
w=type: ds 1 ;write operation type
dmaadr: ds 2 :last dma address
hstbuf: os hstsiz :host buffer

·•.******************-**********************************••• ••
• ••
• ••
.*************************************~***************•

321 :
322:
323:
324 :
325:
326 :
327:
328:
329 :
330:
331 :
332:
333:
334:
335:
336:
337:
338:
339:
340:
341 :
342:
343:
344:
345,
346:
34 7:
348 :
349 :
350:
351 :
352:
353 :
354 :
355,
356 :
357:
358:
359:
360:
361 :
362 :
363:
364:
365,
366:
367,
368:
369 :
370:

72

end

*
*
*

The ENDEF macro invocation goes here

.***•
· *•
· *•
· *•.***•

371,
372,
373,
374,
375,
376,

73

