i

DIGITAL REGEARCH’

Post Office Box 579, Paclific Grove, California 833950, (408) 6438-3896

CP/M 2.2 ALTERATION GUIDE

‘Copyright (e) 1979

DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language. in any form or bv anv
means, electronic, mechanical, magnetic, optical. chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950,

Disclaimer

Digital] Research makes no representations or warranties with
respect to the contents hereof and specifiecally diselaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID gre trademarks of Digita)l Research.

CP/M 2.2 ALTERATION GUIDE

Copyright (c) 1979
Digital Researcn, Box 579
Pacific Grove, California

19.
11,

12.

Introduction

First Level System Regeneration .

Second Level System Generation

Sample Getsys and Putsys Programs

Diskette Organization
The BIOS Entry Points
& Sample BIOS« .+ .

A Sample Cold Start Loader .,

Reserved Locations in Page Zero

Disk Parameter Tables . . ., .
The DISKDEF Macro Library . .
Sector Blocking and Deblocking

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

QMmoo w»

L] . . L

L d L] » L]

. L] L} [4 .

19

12

14

21

22

23

25

39
34
36
39
58

59
61

1. INTRODUCTION

The standard CP/M system assumes operation on an Intel MDS-309
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating enviromment. In this way, the user can produce a diskette
which operates with any IBM-3741 format compatible drive controller
and other peripheral devices,

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
“hard disk" systems,. In order to simplify the following adaptation
process, we assume that CP/M 2.8 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M 1is available, the
customizing process is eased considerably. In this latter case, you
may wishn to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems,

In order to achieve device independence, CP/M 1is separated into
three distinct modules:

BIOS - basic I/0 system which is environment dependent

BDOS - basic disk operating system which is not dependent
upon the hardware configuration

CCP ~- the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
hardware. That is, the user can “patch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware systemn.
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first

time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal

version of the BIOS 1is given in Appendix C which can serve as the
basis for a modified BIOS. 1In addition to the BIOS, the user must
write a simple wmemory loader, called GETSYS, which brings the
operating system into memory., In order to patch the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D. In order to make
the CP/M system work automatically, the user must also supply a cold
start 1loader, similar to the one provided with CP/M (listed in
Appendices A and B)., A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(A1l Information Contained Herein is Proprietary to Digital Research.)

1

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in 3Appendix B, and write a simole version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model, Call tnis new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/outpbut

functions in this phase.

(All Information Contained Herein is Proprietary to Digital Researcn.)

2

(7) Test CBIOS completely to ensure that it oroperly overforms
console character I/0 and disk reads and writes., Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track ana sectors
ars addressed on all reads and writes, FfFailure to make these checks
may cause destruction of the initialized CP/M system after it is
patched.

(3 Referring to figure 1 in Section 5, note tnat the BIOS is
placed between locations 4A0dH and 4FFFH. Read the CP/M system using
GETSYS and revplace the BIOS segment by the new CBIOS developed in step
{(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be vlaced on the diskette in the next step.

(Y) Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(1Y) Use GETSYS to bring the copied memory 1image from the test
diskette bpack into memory at 3380H, ana check to ensure that it has
loaded back proverly (clear memory, if ovossible, before the load).
Upon successful load, brancn to the cola start code at location 4A¢0d.
The cold start routine will initialize vage zero, then jumo to the CCP
at location 34v¥H which will call the BDOS, which will call the C3IOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/#4 will type “A>", the system prompt.

when you make it tnis far, you are almost on the air. 1If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (18), CP/4 has promoted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM
(recall that all commands must be followed by a carriage return).
CP/M should respond with another prompt (after several disk accesses):
A>
If 1t does not, depug your disk write functions and retry.
(L2) Then test the directory command by typing
DIR
CP/M should respond with
A: X COM
(13) Test tne erase command by typing

ERA X.COM

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A prompt, When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely,

(l4) Write a bootstrap loader which is similar to GETSYS, and
place it on track ©, sector 1 using PUTSYS (again using the test
diskette, not the distribution diskette), See Sections 5 and 3 for
nmore information on the bootstrap operation.

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Upon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start® which repoots the system,
and types the A prompt.

(16) At this point, you probably have a good version of vyour
customized CP/M system on your test diskette, Use GETSYS to load CP/#
from vyour test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing
DIR

CP/4 should respond with a list of files which are provided on the
initialized diskette. One such file should be the memory image for
the debugger, called DDT.COM.

NOTE: from now on, it is important that you always reboot the CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced
by another diskette, unless the new diskette is to be read only.

(18) Leoad and test the debugger by typilng
bDT

(see the document "CP/M Dynamic Debugging Tool (DDT)" for operating
proceaures, You should take the time to become familiar with DDT, it
will be your best triend in later steps.

(1) gefore making further CBIOS modifications, practice using
the editor (see the ED wuser's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUTSYS, and CBIOS
programs wusing ED, ASM, and DDT. Code and test a COPY program whicn
does a sector-to-sector copy from one diskette to another to obtain
pack-up coples of the original diskette (NOTE: read your CP/M
Licensing Agreement; it speciflies vyour legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Researcn.)

4

on each copy which is made with your COPY program,

(20) Modify vyour CBIOS to 1include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a additional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which vyou have
developed, or you can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process,

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for vyour wuse only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use,

It should be noted that your system remains file-compatible with all

other CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-proprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

5

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/M with the “MOVCPM" program (system relocator) and
place this memory image into a named disk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities*®
manual,

Your CBIOS and BO0OT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format,

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will be:

CONSTRUCTING xxK CP/M VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this ooint, an image of a CP/M in the TPA configured for the
reguested memory size. The memory image is at location @90¢H through
227Fd. (L.e., The BOOT is at @986H, the CCP 1is at 988H, the BDOS
starts at 118¢d, and the BIOS is at 1F8Q0H.) Note that the memory
image nhas the standard MDS-888 BIOS and BOOT on 1it, It 1is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into 1it:

SAVE 34 CPMxx.COM

The memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed 1in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM Load ODT, then read the CPM
image

DDT should respond with
NEXT PC
2300 0160
- (The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image between 900H and 227FA. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CCp/M address to find the actual
address. Track 90, sector 91 is loaded to location 9@@H (you should
find the «c¢old start loader at 986H to 97FH), track 96, sector 82 is
loaded into 980H (this is the base of the CCP), and so—-forth through
the entire CP/M system load. 1In a 20K system, for example, the CCP
resides at the CP/M address 3400H, but is placed into memory at 98@H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3490 + n = 98PH, or n = 98@BH - 34998

Assuming two's complement arithmetic, n = D588H, which can be checked
by

3400H + D58PH = 10986H = @6980H (ignoring high-order
overflow).

Note that for larger systems, n satisfies
(3466H+b) + n = 98UH, or
n = 98YH — (3460¢H + b), or

n = D580H - b,

The value of n for common CP/M systems is given below

memory size bias b negative offset n
20K J0600H D5S8YH ~- 000YH = DSBOR
24K ld004d D58PH - 19000H = C589H
32K 30064 D58BH - 39000H = AS580@H
40K SO00H D586H - 59084 = 8586H
48K 79004 D58GH - 7000H = 65809H
56K 9y 0vH DS80H - 9YU0OH = 4580H
62K Ag@oH D58¢H - AB89¥H = 2D80H
6 4K BOGOH D58¢0H - B@YGR = 25806H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system, First type

Hx,n Hexadecimal sum and difference
and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by ODT will be the actual memory address in
the image where the data or code will be found. The input

H3499,0580

for example, will produce 980H as the sum, which is where the CCP 1is
located in the memory image under DDT.

Use the L command to disassemble portions the BIOS located at
(4ADDH+D) =-n which, when you use the H command, produces an actual
address of 1F89H, The disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

L1F8@

It is now necessary to patch in your CBOOT and CBIOS routines. The
800T resides at location @98PAH in the memory image, If the actual
load address is "n®, then to calculate the bias (m) use the command:

H989,n Subtract lcad address from
target address.

The second number typed in response to the command is the desired bias
(m). For example, if your BOOT executes at 98BdJH, the command:

H969,80
will reply
298y 0884 Sum and difference in hex.

Therefore, the bias "m" would be 9888H, To read-in the BOOT, give the
command:

ICBOOT.HEX Input file CBOOT.HEX
Then:

Rm Read CBOOT with a bias of
m (=9¢99H~-n)

You may now examine your CBOOT with:
L9¢d

Wwe are now ready to replace the CBIOS. Examine the area at 1F8@H
where the original version of the CBIOS resides. Then type

ICBIOS.HEX Ready the "hex" file for loading

assume that your CB8IOS is peing integrated into a 20K CP/M system, and
thus is origined at location 4APf0H. In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file, This is accomplished by

typing
RD589 Read the file with bias D58@H

Upon completion of the read, re-examine the area where the CBIOS has
bpeen loadea (use an "L1f8@" command), to ensure that is was loaded
properly. When you are satisfied that the change has been made,
return from DDT using a control-C or "G@" command,

Now use SYSGEN to replace the patched memory image back onto a

diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is Proprietary to Digital Research.)

8

SYSGEN
SYSGEN VERSION 2.0

Start the SYSGEN program
Sign-on message from SYSGEN

SOURCE DRIVE NAME (OR RETURN TO SKIP)

DESTINATION DRIVE NAME

Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory,

(OR RETURN TO REBOQT)

Respond with "B" to write the
new system to the diskette in
drive B,

DESTINATION ON B, THEN TYPE RETURN

FUNCTION COMPLETE

Place a scratch diskette in
drive B, then type return.

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform
coldstart to bring up the new CP/M system you have configured.

a

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c¢), 1979
Digital Research

4. SAKMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced 1in Section 2, The READSEC and WRITESEC
subroutines must be insezted by the wuser to read and write the
speciflic sectors.

GETSYS PROGRAM - READ TRACKS @ AND 1 TO MEMORY AT 3380H

; REGISTER USE
; A (SCRATCH REGISTER)
; B TRACK COUNT (B, 1)
; C SECTOR COUNT (1,2,...,26)
; DE (SCRATCH REGISTER PAIR)
: HL LOAD ADDRESS
; SP SET TO STACK ADDRESS
START: LXI SP,3380H ;SET STACK POINTER TO SCRATCH AREA
LXI H, 33804 ;SET BASE LOAD ADDRESS
MVI B, @ ; START WITH TRACK 8
RDTRK : ; READ NEXT TRACK (INITIALLY 8)
MVI c,1 ; READ STARTING WITH SECTOR 1
RDSEC: ;READ NEXT SECTOR
CALL READSEC ;USER-SUPPLIED SUBROUTINE
LXI D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
DAD D ;HL = HL + 128
INR C ;SECTOR = SECTOR + 1
MOV A,C ;CHECK FOR END OF TRACK
CpI 27
JC RDSEC ; CARRY GENERATED IF SECTOR < 27
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
JC RDTRK ;CARRY GENERATED IF TRACK < 2

e wo

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

USER-SUPPLIED SUBROUTINE TO READ THE DISK
EADSEC:
ENTER WITH TRACK NUMBER IN REGISTER 8,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

AR T TR T N v BT 14

PUSH B ;SAVE B AND C REGISTERS
PUSH A ;SAVE HL REGISTERS

& @ 2 5 5 6 6§V PP B OO A L O U ESGS UV UINS » ®» 3 " aw P BB s B

perform disk read at this point, branch to

label START if an error occurs

POP H ; RECOVER HL

POP B ;RECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

END START

(All Information Contained Herein is Proprietary to Digital Research,)

19

Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 100H. The hexadecimal
operation codes which are listed on the left may be wuseful 1if the
program has to be entered through your machine's front panel switches,

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, 2as shown 1in
Appendix D. The register pair BL become the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL
is written to the track given by register B and sector given by
register C,. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Proprietary to Digital Research,)

11

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
CP/M 1is given here for reference purposes, The first sector (see
table on the following page) contains an optional software boot
section, Disk controllers are often set uop to bring track 8, sector 1
into memory at a specific location (often location 9@66H). The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors 1into memory starting at location
34064+b, If your controller does not have a built-in sector load, you
can ignore the program in track 8, sector 1, and begin the 1load from
track @ sector 2 to location 3400H+Db.

As an example, the Intel MDS-808 hardware cold start loader brings
track 2, sector 1 into absolute address 300@H. Upon loading this
sector, control transfers to location 3880H, where the bootstrap
operation commences by loading the remainder of tracks 4, and all of
track 1 1into memory, starting at 340¢H+b. The user should note that
tnis bootstrap loader is of 1little wuse in a non-MDS environment,
althocugh it 1is wuseful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Track$ Sectoré Page# Memory Address CP/M Module name

- o o o —— e . M D e e e e e e e S e e A e e e N e e e

g0 21 (boot address) Cold Start Loader
29 g2 08 3480H+b CCp

" 23 " 3480H+Db "

" 04 81 3508H+b "

" B5 " 358@H+b "

™ D6 B2 360BH+D “

" 87 - 368BH+b "

" 28 23 3760H+D "

" 89 - 3788K+b "

" 19 g4 3809H+b !

v 11 " 3886H+b "

" 12 85 3900H+b "

" 13 M 398¢H+b “

g 14 26 3AB@OB+Db "

" 15 " 3A80AH+b "

" 16 87 3BARGH+D "
29 17 “ 3B80@H+b cce
20 18 a8 3C2dH+b BDOS

- 19 " 3C8@H+b "

" 20 09 3D90RB+Db "

. 21 " 3D89H+b .

" 22 10 3EZ4QH+b "

* 23 " JE8@H+b .

“ 24 11 3FBOH+D "

* 25 " 3JF86@H+b .

“ 26 12 4800H+Db "
2l al " 4880H+D "

" 22 13 4190H+b "

N 03 " 4180H+b "

" 24 14 4200H+b "

¢ a5 " 4280H+b “

" 06 15 4300H+b "

" Q7 ® 4386H+b "

* 068 16 44904d+b “

N 09 o 4489H+b "

" 19 17 4500H+Db "

" 11 ¢ 4580H+b "

" 12 18 468GR+b "

" 13 o 4680H+b "

" 14 19 4700H+b “

" 15 - 478PH+Db “

" 16 20 4800H+D "

“ 17 N 4880H+b .

" 18 21 4990AH+b "

A1 19 " 49806H+b BDOS

a1 29 22 4208H+b BIOS

“ 2] ¥ 4A80H+Db "

“ 23 23 4B2OB+b ™

- 24 - 4B8QGH+b .

" 25 24 4C0EH+b "

81l 26 " 4C8@H+b R BIOS

p2-76 B1-26 (directory and data)

{All Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and BDOS

are detailed below. Entry to the BIOS 1is through a “"jump vector™
located at 4A@0H+b, as shown below (see Appendices B and C, as well).
The jump vector is a sequence of 17 Jjump instructions which send
program control to the individual B8I0S subroutines, The BIOS
subroutines may be empty for cerxtain functions (i.e., they may contain
a single RET operation) during regeneration of CP/M, but the entries
must be present in the jump vector,

The jump vector at 4AP@H+b takes the form shown below, where the

individual jump addresses are given

4p00H+b JMP BOOT ;
4AQ3H+D JMP WBOOT ;
474 6d+b JMP CONST H
4AP9H+b JMP CONIN H
4A0CH+Db JMP CONOUT :
4A@QFH+b JMP LIST :
4Al12B+b JMP PUNCH ;
4A]15H+Db JMP READER H
4A18H+b JMP HOME :
421BH+bD JMP SELDSK ;
4AlEH+YD JMP SETTRK H
4A21B+b JMP SETSEC ;
4A24d+D JMP SETDMA H
4A27d+b JMP READ ;
4A2AH+D JMP WRITE ;
4A2DH+Db JMP LISTST ;
4239H+b JMP SECTRAN H

Each jump address corresponds to

to the left:

ARRIVE HERE FROM COLD START LOAD
ARRIVE HERE FOR WARM START

CHECK FOR CONSOLE CHAR READY
READ CONSOLE CHARACTER IN

WRITE CONSOLE CHARACTER OUT
WRITE LISTING CHARACTER OQT
WRITE CHARACTER TO PUNCH DEVICE
READ READER DEVICE

MOVE TO TRACK #9 ON SELECTED DISK
SELECT DISK DRIVE

SET TRACK NUMBER

SET SECTOR NUMBER

SET DMA ADDRESS

READ SELECTED SECTOR

WRITE SELECTED SECTOR

RETURN LIST STATUS

SECTOR TRANSLATE SUBROUTINE

a particular subroutine which

performs thne specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character 1I/0

performed by calls on CONST, CONIN,
LISTST,
SETSEC, SETDMA, READ, WRITE,

All simple character I/O operati

CONOUT, LIST, PUNCH, READER, and

and diskette I/O performed by calls on BOME, SELDSK, SETTRK,
and SECTRAN,

ons are assumed to be performed in

ASCII, upper and lower case, with high order (parity bit) set to zero.
An end-of-file condition for an input device is given by an ASCII
control-z (lAH), Peripheral devices are seen by CP/M as *“logical"”
devices, and are assigned to physical devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOUT subroutines (LIST, PUNCH, and READER may be used by PIP, but
not the BDOS}). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the initial ve:rsion of CBIOS may have empty
subroutines for the remaining ASCII devices,

(A1l Information Contained Hereiln is

14

Proprietary to Digital Research.)

The characteristics of each device are

CONSOLE The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

LIST The principal listing device, 1f it exists on vyour
system, which is usually a hard-copy device, such as a
printer or Teletype.

PUNCH The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

READER The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single peripheral can be assigned as
the LIST, PUNCH, and READER device simultaneously. If
- no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not "hang" if the device is accessed by PIP or some
other user program, Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a 1A8 (ctl-2) in reg A to indicate
immediate end-of-file.

For added flexibility, the wuser can obotionally
implement the “IOBYTE" function which allows
reassignment of vphysical and 1logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which <can be altered during CP/M
processing {see the STAT command). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently
location ¥@B3H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which 1is
in effect at a particular time. The mapping 1is
performed by splitting the IOBYTE 1into four distinct
tields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

IOBYTE AT 0063d | LIST | PUNCH | READER | CONSOLE)

bits 6,7 bits 4,5 bits 2,3 bits 6,1
The value in each field can be in the range -3,
defining the assigned source or destination of each

logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research,)

15

CONSOLE field (bits @,1)

)
1
2

3

console is assigned to the console printer device (TTY:)
console is assigned to the CRT device (CRT:)

batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)

user defined console device (UCl:)

READER field (bits 2,3)

0
1
2
3

READER is the Teletype device (TTY:)

READER is the high-speed reader device (RDR:)
user defined reader # 1 (UR1l:)

user defined reader § 2 (UR2:)

PUNCH field (bits 4,5)

PUNCH is the Teletype device (TTY:)

PUNCH is the high speed punch device (PUN:)
user defined punch # 1 (UPl:)

user defined punch § 2 (UP2:)

LIST field (bits 6,7)

)
1
2
3

LIST is the Teletype device (TTY:)
LIST is the CRT device (CRT:)

LIST is the line printer device (LPT:)
uszar defined list device (ULl:}

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. No CP/M systems use the IOBYTE (althougn they
tolerate the existence of the I0BYTE at 1location
Pd03H), except for PIP which allows access to the

physical devices, and STAT whicn allows
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide"). In any case, the IOBYTE

implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities,

Disk I/0 is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/O operation. After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/0 operation.
Note that there is often a single call to SELDSK to
select a disk darive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subseqguent operations. Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selected DMA address before the DMA address is changed.
The track and sector sudbroutines are always called
before the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

16

Note that the READ and WRITE routines should
perform several retries (1P 1is standard) before
reporting the error condition to the BDOS. If the
error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actuvally perform the track #8 seek, depending upon
your controller characteristics; the important point is
that track 88 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 88.

The exact responsibilites of each entry point
subroutine are given below:

BOOT The BOOT entry point gets control from the cold start
loader and 1is responsible for basic system
initialization, 1including sending a signon message
(which can be omitted in the first version), If the
IOBYTE function is implemented, it must be set at this
point, The various system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 34686H+b for further
processing, Note that reg C must be set to zero to
select drive A.

WBOOT The WBOOT entry point gets control when a warm start
occurs. A warm start 1is performed whenever a user
program branches to location #092H, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not 1including, the BIOS (or CBIOS, 1if vyou have
completed your patch). System parameters must be ini-
tialized as shown below:

location 6,1,2 set to JMP WBOOT for warm starts
(00006H: IJMP 4AQ3H+D)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which 1is the
primary entry point to CP/M for
transient programs, (0695H: JMP
3CR6H+D)

(see Section 9 for complete details of page zero use)
Upon completion of the 1initialization, the WBOOT
program must branch to the CCP at 3480H+b to (re)start
the system, Upon entxy to the CCP, register C 1is set
to the drive to select after system initialization.

CONST Sample the status of the currently assigned console
device and return OFFH in register A if a character 1is
ready to read, and @¢H in register A if no console
characters are ready.

CONIN Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

CONOCGT

LIST

PUNCH

READER

HOME

SELDSK

set the parity bit (high order bit) to zero. If no
console character is ready, wait until a character 1is
typed before returning.

Send the character from register C to the console
output device, The character is in ASCII, witbh high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (such as a TI Silent 780 terminal). You
can, 1if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for example).

Send the character from register C to the currently
assigned 1listing device, The character is in ASCII
with zero parity.

Send the character from register C to the currently
assigned punch device, The character is in ASCII with
zero parity,

Read the next character from the currently assigned
reader device 1into register A with zero parity (high
order bit must be 2ero), an end of file condition 1is
reported by returning an ASCII control-z (lABH).

Return the disk head of the currently selected disk
(initially disk A) to the track 88 position. If your
controller allows access to the track 6 flag from the
drive, step the head wunti) ¢the track © flag is
detected. If your controller does not support this
feature, you can translate the HOME call into a call
on SETTRK with a parameter of #.

Select the disk drive given by register C for further
operations, where register C contains @ for drive A, 1
for drive B, and so—-forth up to 15 for drive P (the
standard CP/M distribution wversion supports four
drives), On each disk selecrt, SELDSK must return 1in
HL the base address of a lé6-byte area, called the Disk
Parameter Header, described in the Section 1@, For
standarqd floppy disk drives, ¢the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive,” SELDSK returns
HL=0PBOBOH as an error indicator. Although SELDSKR must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/0 function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.)

18

before selecting the new drive., This would cause an
excessive amount of noise and disk wear.

SETTRK Register BC contains the track number for subseguent
disk accesses on the currently selected drive, You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register BC can take on values in the range
§-76 corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard disk
subsystems,

SETSEC Register BC contains the sector number (1 through 26)
for subseguent disk accesses on the currently selected
drive, You can choose to send this information to the
controller at this point, or 1instead delay sector
selection until a read or write operation occurs,

SETDMA Register BC contains the DMA (disk memory access)
address for subsequent read or write operations. For
example, if B = 008 and C = 80H when SETDMA is called,
then all subsequent read operations read their data
into 86H through @FFB, and all subseguent write
operations get their data from B8¢gH through #FFH, until
the next call to SETDMA occurs, The initial DMA

address is assumed to be 89BH. Note that the
controller need not actually subport direct memory
access. I1f, for example, all data is received and

sent through I/0 ports, the CBIOS which you construct
will wuse the 128 byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations.

READ Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA address
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

0 no errors occurred
l non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as the return code. That is, i1f the value in
register A is @ then CP/M assumes that the disk
operation completed properly. If an error occurs,
however, the CBIOS should attempt at least 18 retries
to see if the error is recoverable, When an error is
reported the BDOS will print the message "“BDOS ERR ON
X: BAD SECTOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort.

WRITE Write the data from the currently selected DMA address

to the currently selected 4rive, track, and@ sector.
The data should be marked as "non deleted data” to

(A1l Information Contained Herein is Proprietary to Digital Research.)

19

maintain compatibility with other CP/M systems,. The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above,

LISTST Return the ready status of the list device, Used by
the DESPOOL program to improve console response during
its operation, The value U0 is returned in A if the
list device is not ready to accept a character, and
BFFH 1if a character can be sent to the printer., Note
that a 88 value always suffices.

SECTRAN Performs sector logical to physical sector translation
in order to improve the overall response of CP/H.
Standard CP/M systems are shipved with a “skew factor™
of 6, where six physical sectors are skipped between
each logical read operation. This skew factor allows
enough time between sectors for most programs to load
their buffers witnout missing the next sector. In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response, Note, however,
that you should maintain a single density IBM
compatible version of Cp/M for information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC, and a translate table address 1in
DE. The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL, For standard systems, the tables and
indexing code is orovided in the CBIOS and need not be
changed.

(A1l Information Contained Herein is Proprietary to Digital Research.)

20

7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for vyour
first BIOS. The simplest functions are assumed in this BIOS, so that
you can enter it through the front panel, 1if absolutely necessary,.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions, The scratch area
reserved in page zero (see Section 9) for the BIOS 1is used 1in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the 1initial sign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

21

8. A SAMPLE COLD START LOADER

The program shown in Appendix D can serve as a basis for your colad
start loader. The disk read function must be supplied by the user,
and the program must be loaded somehow starting at location ¢¢00.
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(track 0, sector 1), and cause your controller to load it into memory
auvtomatically upon system start-up. Alternatively, you may wish to
place the cold start loader into ROM, and place it above the CP/M
system, In this case, it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
which branches to the loader. Subsequent warm starts will not require
this key—-in operation, since the entry point ‘WBOOT' gets control,
thus bringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
be enhanced on later versions.

(A1l Information Contained Herein is Proprietary to Digital Research.)

22

9. RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations B#9H and WUFFH, contains
several segments of code and data which are used during CP/M
processing. The code and data areas are given below for reference
purposes,

Locations Contents
from to
0000R - Q002K Contains a jump instruction to the warm start

entry point at location 4A03B+b, This allows a
simple programmed restart (JMP @999YH) or manual
restart from the front panel,

0603

038 Contains the Intel standard IOBYTE, which 1is
optionally included in the user's CCBIOS, as
described in Section 6.

29948

¥o04n Current default drive number (8=3a,...,15=P).

60054

BB 74d Contains a Jjump 1instruction to the BDOS,and
serves two purposes: JMP B#865H provides the
primary entry point to the BDOS, as described in
the manual “CP/M Interface Guide,” and LHLD
P¥dB6H brings the address field of the
instruction to the HL register pair. This value
is the lowest address in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DDT program will change the address
field to reflect the reduced memory size in
debug mode,

000 8H

G274 (interrupt locations 1 through 5 not used)

023088

88370 (interrupt location 6, not «currently used -
reserved)

6038H 08 3AH Restart 7 — Contains a jump instruction into the
DDT or SID program when running in debug mode
for bprogrammed breakpoints, but is not otherwise

used by CP/M.

093BH

00 3FH (not currently used — reserved)

006404 ¥D4FH 16 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution

version of CP/M

Pd50H

PP 5SBA (not currently used - reserved)

Be5CH

087CH default file <control block produced for a
transient program by the Console Command
Processor,

PB7DR

POTFH Optional default random record oosition

(All Information Contained Herein is Proprietary to Digital Research.)

23

906804 ~ BOFFH default 128 byte disk buffer (also filled with
the command line when a transient is loaded
under the CCP).

Note that this information is set-up for normal operation under
the CP/M system, but can be overwritten by a transient program if the
BDOS facilities are not reguired by the transient,

If, for example, a particular program performs only simple I/0 and
must begin execution at location @, it can be first loaded 1into the
TPA, wusing normal CP/M facilities, with a small memory move program
which gets control when loaded (the memory move program must dget
control from location B81006H, which is the assumed beginning of all
transient programs), The move program can then proceed to move the
entire memory image down to location @, and pass control to the
starting address of the memory load,. Note that if the BIOS 1is
overwritten, or if location ® {(containing the warm start entry point)
1s overwritten, then the programmer must bring the CP/M system Dback
into memory with a cold start seguence,

(All Information Contained Herein is Proprietary to Digital Research.)

24

1. DISK PARAMETER TABLES,

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M, These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B, The purpose here is to describe the elements of these
tables,

In general, each disk drive has an associated (l6-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDOS operations, The
format of the disk parameter header for each drive is shown below

Disk Parameter Header
| XLT | 9000 | 0088 | 908060 |DIRBUF| DPB | CSV | ALV |
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (lé-bit) value, The meaning of each Disk
Parameter Header (DPH) element is

XLT Bddress of the logical to physical translation vector,
if used for this particular drive, or the value 00880H
if no sector translation takes place (i,e, the physical
and logical sector numbers are the same), Disk drives
with identical sector skew factors share the same
translate tables,

0009 Scratchpad values for use within the BDOS (initial
value is unimportant),

DIRBUF Address of a 128 byte scratchpad area for directory
operations within BDOS. Al]l DPH's address the same

scratchpad area,

DPB BAddress of a disk parameter block for this drive,
Drives with identical disk characteristics address the
same disk parameter block,

csv Address of a scratchpad area used for software check
for changed disks. This address is different for each
DPH.

ALV Address of a scratchpad area used by the BDOS to keep

disk storage allocation information, This address is
different for each DPH,

Given n disk drives, the DPH's are arranged in a table whose first row

of 16 bytes corresponds to drive 8, with the last row corresponding to
drive n-1, The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

———— ———————————— ————————— —— ———— ————] - — — S . i e e e ————— —

66 |XLT 96| 9060 | 0099 | 6600 IDIRBUF|DBP #4ICSvV @0IALV 00

g1 |XLT 91| 6890 | 9000 | 0404 |DIRBUF|DBP 81ICSV d1iALV 41|

———— ———————— et Aty T S b A R MR M A e A e e —— — — ————— —

— —— —————————— o ot e Pt e M o —— — — ——— — ———— ————

n-1{XLTn-1| 0009 | 6008 | 96490 |DIRBUF|DBPn-1|CSVn-1|ALVn-1|

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The foliowing seguence of
operations returns the table address, with a 0@#800H returned if the
selected drive does not exist,

NDISKS EQU 4 ; NUMBER OF DISK DRIVES
SELDSK:
;SELECT DISK GIVEN BY BC
LXI H,08008 : ERROR CODE
MOV A,C ;sDRIVE OK?
CPI NDISKS ;:CY IF SO
RNC ;RET IF ERROR
+NO ERROR, CONTINUE
MOV L,C ; LOW (DISK)
MOV H,B sHIGH(DISK)
DAD H ;%2
DAD B 1 %4
DAD H ;*¥8
DAD H s *]16
LXI D,DPBASE :FIRST DPH
DAD D :DPH (DISK)
RET

The translation vectors (XLT 48 through XLTn-l) are located
elsewhere 1in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1l, The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPH's, takes the general form

| SPT IBSHIBLMIEXM| DSM | DRM |ALg|ALY|] CKS | OFF |
" 16b 8b 8b 8 16b 16b 8b 8b 16b 16b
where each is a byte or word value, as shown by the "“8b" or "16b”
indicator below the field.
SPT is the total number of sectors per track
BSH is the data allocation block shift factor, determined

by the data block allocation size.

{all Information Contained Herein is Proprietary to Digital Research.)

26

EXM is the extent mask, determined by the data block
aliocation size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive AL@G,AL1l determine reserved
directory blocks.

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which 1is not an entry in the disk parameter block. Given
that the designer has selected a value for BLS, the values of BSH and
BLM are shown in the table below

-

BLS BSH BLM
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

where all values are in decimal. The value of EXM depends wupon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 @ N/A
2,048 1 @
4,896 3 1
8,192 7 3
16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+1) is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks.

The DRM entry is the one less than the total number of directory
entries, which can take on a 1l6-bit value. The values of AL# and ALl,
however, are determined by DRM. The two values AL6 and ALl can
together be considered a string of lé6-bits, as shown below,

(All Information Contained Herein is Proprietary to Digital Research.)

27

———————— S ¢ g i ———————— - — i AN Ay e WD W S M A e P T G AR M ——
—— e — ———— ————— ——— Y I S M M S B M e G e e e e N G N M R S S e

80 01 62 03 84 05 86 @7 68 A9 14 11 12 13 14 15

where position 6@ corresponds to the high order bit of the byte
labelled ALB, and 15 corresponds to the low order bit of the byte
labelled AL1. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at €6 and
filled to the right until position 1S5). Each directory entry occupies
32 bytes, resulting in the following table

BLS Directory Entries
1,624 32 times # bits
2,048 64 times ¥ bits
4,996 128 times § bits
8,192 256 times § Dbits

16,384 512 times 4 bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1824, then there
are 32 directory entries per block, reguiring 4 reserved blocks, In
this case, the 4 high order bits of AL® are set, resulting in the
values AL = @F@H and ALl = O@H.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+1)/4, where DRM is the last directory
entry number. If the media is fixed, then set CKS = 8 (no directory
records are checked in this case),

Finally, the OFF field determines the number of tracks which are
skipped at the beginning of the physical disk. This wvalue 1is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections,

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
Further, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function 1is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain, Both addresses reference an
area of uninitialized memory following the BIOS, The areas must be
unigue for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular

drive. If CKS = (DRM+l)/4, then you must reserve (DRM+l)/4 bytes for
directory check use. If CKS = @, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research,)

28

The size of the area addressed by ALV 1is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+1,

The CBIOS shown in Appendix C demonstrates an instance of these

tables for standard 8" single density drives. It may be useful to

examine this program, and compare the tabular values with the
definitions given above,

(All Information Contained Herein is Proprietary to Digital Research.)

29

11, THE DISKDEF MACRO LIBRARY,

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process, You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while ¢the macro library 1is included with all CP/M 2.0
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF @6,...
DISKDEF 1

DISKDEF n-1

P e s>

a ¢ &6 0 80

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables, The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16, A series of
DISKDEF macro calls then follow which define the characteristics of
each 1logical disk, @ through n-1 (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector,.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement, The ENDEF (End of Diskdef) macro generates the

necessary uninitialized RAM areas which are located in memory above
your BIOS,

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, # to n-1
fsc is the first physical sector number (@6 or 1)
1sc is the last sector number
skf is the optional sector skew factor -
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 249
(0] is an optional 1.4 compatibility flag

The value *dn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research.)

38

macro invocation. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 8 or 1. The "“1lsc* 1s the 1last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew, If the number of sectors 1is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes, No translation table is created if the
skf parameter 1is omitted (or equal ¢to #8). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4896, 8192, or 16384, Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 10608, then the total disk capacity is 2,848,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1424, The value of “dir" 1is the total number of
directory entries which may exceed 255, 1if desired. The ‘“cks*
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily <changed, as is the case with a floppy disk subsystem, If
the disk is permanently mounted, then the value of cks is typically @,
since the probability of changing disks without a restart 1is guite
low. The “ofs” value determines the number of tracks to skip when
this particular drive is addressed, which <can be wused ¢to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [@]
parameter 1is 1included when file compatibility is reguired with
versions of 1.4 which have been modified for higher density disks,
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions, Normally, this
parameter is not included,.

For convenience and economy of table space, the special form
DISKDEF i,3
gives disk i the same characteristics as a previously defined drive j.

A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(A1l Information Contained Herein is Proprietary to Digital Research.)

31

DISKS 4
DISKDEF $,1,26,6,1024,243,64,64,2
DISKDEF 1

DISKDEF 2
DISKDEF 3

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 19824 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and ¢two operating
system tracks,

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPH table address DPBASE generated by the macro., Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four

drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE EQU §

DPEDG: DW XLT@ ,0000H ,90008,0069008H,DIRBUF ,DPBP,CSVD ALV
DPEl: DW XLT9,0000H,0900H,004008H,DIRBUF,DPBA,CSV]1,ALV]
DPE2: DW XLTO ,00208,9900H,2d99H,DIRBUF ,DPBE,CSV2,ALV2
DPE3: DW XLTQ,90408,99008,04904,DIRBUF,DPB@,CSV3 ,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive @ through 3, The values
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are

generated by the ENDEF macro in the ram area following the BIOS code
and tables,

Note that if the "skf" (skew factor) parameter 1is omitted (or
equal to @), the translation table is omitted, and a 08@EH value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent <¢all to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
e8dP9H, and simply returns the original logical sector from BC in the
HL register pair. A translate table 1is constructed when the skf
parameter 1is present, and the (non-zero) table address is placed into
the corresponding DPH's, The table shown below, for example, 1is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT9: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of wuninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated Dby the ENDEF macro. Por a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

4C72

BEGDAT EQU $
({data areas)
ENDDAT EQU $
DATSIZ EQU S-BEGDAT

4DBO
£13C

which indicates that uninitialized RAM begins at location 4C728, ends
at 4DBPH-1, and occuplies B1l3CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can vuse the STAT program to check vyour
drive characteristics, since STAT uses the disk parameter block to
decode the drive information, The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive 4 (d=A,...,P) and displays
the values shown below:

128 Byte Record Capacity
Kilobyte Drive Capacity
32 Byte Directory Entries
Checked Directory Entries
Records/ Extent

Records/ Block

Sectors/ Track

Reserved Tracks

TOOMmOQ XK

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the last produces a full
8-megabyte system) .,

DISKDEF 6,1,58,,2048,256,128,128,2
r=4996, k=512, 4=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 9,1,58,,2048,19024,300,06,2
r=16384, k=2048, 4=300, c=9, e=128, b=16, s=58, t=2

DISKDEF #,1,58,,16384,512,128,128,2
r=65536, k=8192, =128, c=128, e=1924, b=128, s=58, t=2

(All Information Contained Herein is Proprietary to Digital Research.)

33

12, SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit, The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically.

Upon each c¢all to WRITE, the BDOS provides the following
information in register C:

normal sector write
write to directory sector
write to the first sector
of a new data block

)
1
2

Condition @ occurs whenever the next write operation 1is into a
previously written area, such as a random mode record update, when the
write 1is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. 1In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file 1is included on your CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector 1involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by '"hst.,“
The eguate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected “he host disk'at this point
(it 1s selected later at READHST or WRITEHST). PFurther, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point, SECTRAN performs a trivial trivial function of
returning the physical sector number,

The principal entry points are READ and WRITE, starting on lines
119 and 125, respectively. These subroutines take the place of vyour
previous READ and WRITE operations,

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research.)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may reguire translation to a physical sector

number) . You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz, All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. when
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 460% improvement in overall response.

In this situation, there 1is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) 128-byte sectors, This 1is

primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research.)

35

APPENDIX A: THE MDS COLD START LOADER
MDS-888 Cold Start Loader for CP/M 2.0

Version 2.8 August, 1979

® Wy wn we

’

0009 = false equ)
ffff = true equ not false
0009 = testing equ false
if testing
bias equ A3409h
endif
if not testing
poed = bias equ gedan
endif
gage = cpmb equ bias :base of dos load
p806 = bdos equ 8B86h+bias ;entry to dos for calls
1880 = bdose equ 1888h+bias :end of dos load
1668 = boot egu l6@eéh+bias ;cold start entry point
16083 = rboot egu boot+3 ;warm start entry point
3080 org 36808h ;loaded here by hardware
1880 = bdosl equ bdose-cpmb
B022 = ntrks egu 2 stracks to read
po31 = bdoss equ bdosl/128 ;# sectors in bdos
0019 = bdos#d equ 25 ;% on track @
gplg = bdosl egu bdoss-bdos8 ;4 on track 1
£808 = mon8@ equ 2£f8d6h ;intel monitor base
£fGE = rmon8® equ 6ffofh ;restart location for mon8@
p078 = base equ 978h : 'base' used by controllex
679 = rtype equ base+l ;result type
887b = rbyte equ base+3 ;result byte
907£ = reset equ base+7 ;reset controller
8B78 = dstat egu base ;disk status port
@679 = ilow equ base+l ;low 1opb address b
Ppo7a = ihigh equ base+2 ;high iopb address
9Off = bsw equ gffh ;boot switch
p9g3 = recal equ 3h ;recalibrate selected drive
poR4 = readf equ 4h ;disk read function
Bl9e = stack eqgu 1006h ;use end of boot for stack
rstart:
3908 310601 1xi sp,stack;in case of call to mon88
; clear disk status
3983 db79 in rtype
3045 db7b in rbyte
; check if boot switch is off
coldstart:
3007 dbff in bsw
3853 895%3@ R% g%?dstaréswltCh on?

36

clear the controller

-~y

30de Aa37f out reset ;logic cleared
H
3010 P6B2 mvi b,ntrks ;number of tracks to read
3612 214230 1xi h,iopb#
start:
!
; read first/next track into cpmb
391s 74 mov a,l
3816 d379 out ilow
3818 7c mov a,h
3619 d437a out ihigh
381lb 4b78 waitf: in dstat
3181¢ 889830 32l daivs
: check disk status
3922 db79 in rtype
3024 e6p3 ani 11b
3926 fel2 cpi 2
[4
if testing
cnc rmon8@ ;go to monitor if 11 or 14
endif
if not testing
3028 320038 jnc rstart ;retry the load
endif
392b db7b in rbyte ;i/0 complete, check status
H if not ready, then go to mon8@
3828 17 ral
302e dcoBfff cc rmon8@ ;not ready bit set
3831 1f rar ;restore
3032 eéble ani 11118b j;overrun/addr err/seek/crc
’
if testing
cnz rmon8@ ;90 to monitor
endif
if not testing
3034 c2080630 inz rstart ;retry the load
endif
H
3637 110780 1xi d,iopbl ;length of iopb
363a 19 dad d ;addressing next iopb
383b 45 dcr b ;count down tracks
383c c2153@ inz start

w1 we we

jrop boot, print message, set-up jmps
383f c30016 jmp boot

-e wu

parameter blocks

37

38642
3843
3044
3845
3646
3847
aae?

3249
3084a
304b
ig4c
3044
304e
3954

80
24

20
82
2090

89
B4
18
g1
81
8@dc

iopb#:

iopbl
iopbl:

db
ab

db
db
dw
equ

cb
db
db
db
db
dw
end

8ah
readf
bdos?
)

2
cpmb

$-iopbd

80h
readf
bdosl
1

1

;iocw, no update

;read function

:% sectors to read trk
strack 9

;start with sector 2,
;start at base of bdos

:sectors to read on tr
strack 1
ssector 1

cpmb+bdos@*128 ;base of secon

38

]

trk @

ack 1

d rd

Bp14

4a00
3400
3cB6
1609
g82c
0002
poo4
P80
poda

4a08
4a03
4206
4a@9
4afc

c3b34a
c3c34a
c3614b
c3644b
c36adb

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

~a we wa o nyg wp v @ N e
11
~
(n

cpmb
bdos
cpml
nsects
of fset
cdisk
buff
retry

g I WO NP ME WA W W WE WP W@ WP WE WG NP WO WD WP WF vm WP We md WP e WA~y

wboote:

mds-88P i/o drivers for cp/m 2.8
(four drive single density version)

version 2,8 august, 1979

egu 20 rversion 2,90
copyr ight (¢) 1979

digital research

box 579, pacific grove
california, 93950

org 4a@fh ;base of bios in 20k system

egu 3400h ;base of cpm ccp

egu 3¢cB6h ;base of bdos in 28k system

eqgu S$-cpmb ;length (in bytes) of cpm system

equ cpml/128;number of sectors to load

egu 2 ;number of disk tracks used by cp
eqgu 2B804h ;address of last logged disk

equ P2 8Ph ;default buffer address

equ 19 smaxXx retries on disk 1/0 before e

perform following functions
boot cold start
wboot warm start (save i/o byte)
{boot and wboot are the same for mds)
const console status
reg-a = P8 if no character ready
reg-a = ff if character ready
conin console character in (result in reg-a)
conout console character out (char in reg-c)
list list out (char in reg-c)
punch punch out (char in reg-c¢)
reader paper tape reader in (result to reg-a)
home move to track 89

(the following calls set-up the io parameter bloc
mds, which is used to perform subseguent reads an
seldsk select disk given by reg-c (8,1,2,..)
settrk set track address (9,...76) for sub r/w
setsec set sector address (1,...,26)

setdma set subsequent dma address (initially 82h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

jump vector for indiviual routines

jmp boot

ymp wboot
jmp const
jmp conin
mp conout

39

4a@f c36d4b
4al2 c3724b
4al5 ¢3754b
4al8 c3784p
4alb c¢37d4b
4ale c3a74b
4a2l c3ac4b
4a24 c3bb4b
4a27 c3cldb
4a2a cl3cadb
4a2d cl784b
4a3@ c3bldb

4a33+=

4a33+824a040
4a37+2900200
4aib+6edc?3
4alf+9d4dee
4a43+824a00
4a47+920009
4dadb+6ed4c?3
4a4f+3c4adld
4a53+824a04
4a57+3000042
4a5b+6e4c?3
4a5f+6b4d4dc
4a63+824200
4a67+0000080
4abb+6edc?3
4a6£+9a4d7b

437 3+=
4a73+1adg
4a75+83
4a276+87
4a77+08
4a78+£200
4a7at+t3fpo
4a7c+ch
4a74+28
4ale+l 000
4a80+2209
4a82+=
4a82+@1
4a83+87
4a84+04d
4a85+13
4a86+19
4a87+85
4a88+6b
4a89+411
4a8a+l?
4a8b+93

-

dpbase
dped:

dpel:

dpe2:

dpel:

dpbd

x1ltd

diskdef
equ
dw
db
db
db
dw
dw
db
db
dw
aw
eqgu
db
db
db
db
db
db
db
db
db
ab

list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst ;list
sectran

diskdef ;load
4 : four
) :base
x1tg,0080h
2340h,80806n0
dirbuf,dpbd
csvd ,alvd
xltl,d6908h
go0dh,0000h
dirbuf,dpbl
csvl,alvl
x1lt2,00008h
g066h,002068h0
dirbuf,dpb?2
csv2,alv2
x1t3,6000h
¢d9080h,0880Nn
dirbuf,dpb3
csvi,alv3

0,1,26,6,1024,

9
26
3
7
2
242
63
192
g
16
2
$
1
7
13
19
25
5
11
17
23
3

419

status

the disk definition library
disks
of disk parameter blocks
;translate table
;:8cratch area
;dir buff,parm block
j;check, alloc vectors
stranslate table
1scratch area
sdir buff,parm block
:check, alloc vectors
rtranslate table
;1scratch area
:dir buff,parm block
;check, alloc vectors
s;translate table
;scratch area
;dir buff,parm block
;check, alloc vectors
243,64,64,0ffset
;jdisk parm block
15sec per track
:block shift
;block mask
;extnt mask
;disk size-1
jdirectory max
;alloc@
sallocl
;check size
soffset
;translate table

4a8¢c+99
4a8d+0f
4a8e+l5
4aB8f+02
4a99+£8
4da9l+@e
4a92+14
4a93+1a
4a94+026
4a95+8c
4a96+12
4297+18
4a98+04
4a99+pPa
4a39a+10
4a39b+16

437 3+=
31E+=
2Blo+=
4a8 2+=

4a73+=
QBlE+=
2618+=
4aB82+=

4a73+=
81f+=
2019+=
4a82+=

gefd
defc
gofr3
BB7e

fapo
ffof
f8@3
f806
f869
f80c
f80f
f812

dpbl
alsl
cssl
xltl

dpb2
als2
c5S2
x1t2

dpb3
als3
css3
x1lt3

NP ME NE WP Ve WA %P B W Wy

revrt
intc
icon
inte

r
mon8 @
rmon8@
ci

ri

co

po

lo
csts

db
éb
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdef
equ
egu
equ
egu
diskdef
egu
egu
egu
equ
diskdef
egu
eqgu
equ
equ

9

15
21

2

8

14
28
26

6

12
18
24

4

19
le6
22
1,9
dpb@
alsd
cssd
x1t@
2,0
dpbd
alsg
cssP
x1tg
3,0
dpba
als@
csséd
x1t@

jequivalent parameters

:same allocation vector size
:same checksum vector size
;same translate table

;jeguivalent parameters

;same allocation vector size
1same checksum vector size
;same translate table

;equivalent parameters

ssame allocation vector size
;Same checksum vector size
fsame translate table

endef occurs at end of assembly

end of controller - independent code,

the remaini

are tailored to the particular operating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/0 subroutines within the monitor

we also
equ
equ
equ
equ

assume the mds system has four disk drive
g £dh ;interrupt revert port

@fch ;interrupt mask port

9f3h ;interrupt control port
6111$1110b;enable rst #(warm boot) ,rst 7

mds monitor equates

equ
equ
equ
equ
equ
equ
equ
equ

9f8006h ;mds monitor

0ffAfh ;restart mon8@ (boot error)
0£883h ;console character to reg-a
g£f826h ;reader in to reg-a

2f8e8h ;console char from ¢ to console o
Bpf88ch ;punch char from ¢ to punch devic
P£8A8fh ;list from ¢ to list device
Pf812h ;console status BB/ff to register

4]

0678
0878
2879
8B7b

g0879
pB7a

99804
2086
6963
g004
aead
d0Pa

4a8¢c
4a9f
4aal
4aad
4abd

4ab3
4ab6
4ab9
4abc
4abd
4dacd

4ac3

4acé
4ac8

dacH
fjacc
4acft
4adl
4ad4
4adé6
4ad9
4adb

4ade
4adf

o dnnn

¢doada
32349

6b2d43f

322e34d
pddaop

3190061
219c4a
cdd34b
aft

328400
c390£f4b

318009

Peda
¢c5

019834
cdbb4b
fedd
cd7d4b
dgedd
cda74b
ged?2
cdacidb

cl
g62c

H

;
base
dstat
rtype
rbyte

ilow
ihigh
readf
writf
recal
iordy
cr

1f

-

14
signon:

O e

oot:

e v we § we w0
O
o]
o
s
-e

wboot@:

LYY

disk ports and commands

equ 78h ;base of disk command io ports
equ base ;disk status (input)

eqgu base+l ;result type (input)

equ base+3 ;result byte (input)

egu base+l ;iopb low address (output)
equ base+2 ;iopb high address (output)
eqgu 4h ;read function

equ 6h ;write function

egqu 3h ;recalibrate drive

egu 4h :i/0 finished mask

equ gdh ;carriage return

equ Bah :line feed

;signon message: xxk cp/m vers y.y

db cr,1£f,1f

db ‘21! ;Sample memory size

db 'k cp/m vers '

db vers/14+'8','."',vers mod 14+'8"'
db cr,l1f,@

;print signon message and go to ccp
(note: mds boot initialized iobyte at 8863h)
1xi sp,buff+868h

1xi h,signon

call prmsg ;print message

Xra a sclear accumulator

sta cdisk ;set initially to disk a
jmp gocpm igo to cp/m

loader on track #, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start.

Ixi sp,buff ;using dma - thus 89 thru ff ok £
mvi c,retry :;max retries

push b

s;enter here on error retries

1xi b,cpmb ;set ¢ma address to start of disk
call setdma)

mvi c,0 :boot from drive @

call seldsk

mvi c,d

call settrk ;start with track @

mvi c,2 ;jstart reading sector 2

call setsec

read sectors, count nsects to zero
pop b ;16-error count
mvi b,nsects

42

rdsec: ;read next sector

4ael c5 push b ;:5ave sector count
4ae? cdcléb call read
4ae5 c2494b jnz booterr ;retry if errors occur
4ae8 2abc4c lhlad iod ;increment dma address
4aeb 118000 1xi 4,128 ;sector size
4daee 19 dad d rincremented dma address in hl
daef 44 mov b,h
4af9 44 mov c,l ;jready for call tc set dma
4af]l cdbbidb call setdma
4af4 3abb4c lda ios ;jsector number just read
4af7 fela cpi 26 sread last sector?
4af9 da®54b je rdl

: must be sector 26, zero and go to next track
4afc 3labadc lda iot ;get track to register a
4aff 3c inr a
4b90 4f mov c,a sready for call
4b01 cda74b call settrk
4b94 af Xra a ;Cclear sector number
4b05 3c rdl: inr a ;t0 next sector
4b@6 4f mov c,a sready for call
4b@7 cdac4b call setsec
4bBa cl pop b ;recall sector count
4bdb B5 dcr b :done?
4b@c c2elda inz rdsec

done with the load, reset default buffer address
; (enter here from cold start boot)
enable rstfd and rst?

w |} = ~»
o}
3
3

4bBf £3 di

4bld 3el2 mvi a,l2nh ;initialize command
4b12 43fd out revrt

4bl4 af Xra a

4bl5 d3fc out inte ;cleared

4bl7 3e7e mvi a,inte ;rst8 and rst7 bits on
4bl9 4d3fc out intc

4blb af Xra a

4blc 483f3 out icon sinterrupt control

-p wp

set defauvlt buffer address to 88h

4ble 018000 1xi b,buff
4b21 cdbb4b call setdma
: reset monitor entry points
4b24 3ec3 mvi a,jmp
4b26 320000 sta]
4b29 21@34a 1xi h,wboote
4b2c 220188 shld 1 ;Jmp wboot at location 00
4b2f 3205640 sta 5
4b32 21063c 1xi h,bdos
4b35 2206080 shld 6 ;ijmp bdos at location 5
4b38 323894 sta 7*8 ;Jjmp to mon8@8 (may have been chan
4b3b 2100£8 1xi h,mon8d
4b3e 223500 shld 7*8+1

leave iobyte set

-

43

4b4l
4b44
4b45
4b46

4b49
4b4a
4b4b

4bde
4b4f

4b52
4b55
4b58

4b5b

4b61

4b6 4

4b67

4169

4bba

4b6d

4b70
4b71

4b72

4b75

-

320400
4£
fb
c369034

O ~r ~e

ooterr:
cl

gd

ca524b

c5
¢3c94a

booterd:

’

215b4b
cdd34b
clI30fff

éootmsg:
3f626£f4

const:
c3l12£8

.
4

conin:
cAdg3fs
e67f
c9

conout:
c309f8

list:
c3dff8

listst:

aft
c9

c39cf8

c3066f8

previously selected disk was b, send parameter to

lda cdisk ;last logged disk number
mov c,a ;send to ccp to log it in
ei

jmp cpmb

error condition occurred, print message and retry
pop b ;recall counts

dcr c

jz booterd

try again

push b

jmp wbootd

otherwise too many retries

1xi h,bootmsg

call prmsg

jmp rmon8@ ;mds hardware monitor

db '2boot',B

;console status to reg—a
(exactly the same as mds call)
jmp csts

;console character to reg-a

call ci
ani 7fh ;remove parity bit
ret

;console character from ¢ to console out
jmp co

;list device out
(exactly the same as mds call)
jmp lo

;return list status
Kra a
ret jalways not ready

spunch device out

(exactly the same as mds call)
jmp po

:reader character in to reg-a
(exactly the same as mds call)
jmp ri

jmove to home position

44

4b78
4b7a

4b74d
4b89
4b81
4b83

4b8 4
4b86
4b89
4b8a
4b8c
4b8a
4090

4b92
4b93
4b9%6
4b97
4b99
4b%a

4B4R

4b9e
4b9of
4bag
4bal
4ba2
4bas
4bab

4ba’
4baa
4bab

4bac
4baf
4bbd

4bbl
4bb3
4bb4
4bb5
4bbb

1883

fedd
c3a74b

2100880
79
fed4
de

e602
32664c
79
e601l
b7
ca%924b
3e30

47
21684c
Te
ebcf
b6

77
6200
29

29

29

29
11334a

19
c9

2l6adc
71
c9

216bdc
71
c9

26080
eb
99

326b4c

6
¢

LYY

seldsk:

treat as track €29 seek

setdrive:

~a ww

settrk:

'
setsec:

sectran:

r
setdma:

mvi c,@d

jmp settrk

;select disk given by register ¢

1xi h,0800h ;return @008 if error

mov a,c

cpi ndisks ;too large?

rnc ;leave hl = @099

ani 18b ;08 89 for drive 68,1 and 14 18 fo
sta dbank s1to select drive bank

mov a,c :06, 81, 18, 11

ani 1b smds has B,1 at 78, 2,3 at 88
ora a sresult 867

jz setdrive

mvi a,00110008b ;selects drive 1 in bank
mov b,a ;save the function

1xi h,iof :io function

mov a,m

ani 11001111b ;mask out disk number
ora b ;mask in new disk number

mov m,a ;save it in iopb

EQY %:ﬁ shl=disk number

dad h s %2

dad h ;%4

dad h : *8

dad h ; *16

1xi d,dpbase

dad .d :hl=disk header table address
ret

;set track address given by c

1xi h,iot
mov m,c
ret

;s5et sector number given by c

1xi h,ios
mov m,c
ret

;translate sector bc using table at de

mvi b,B :double precision sector number i
xchg s;translate table address to hl
dad b stranslate(sector) address

mov a,m ;transleted sector number to a
sta ios

?3 l,a jreturn sector number in 1

1set dma address given by regs b,c

45

4bbb
4bbc
4bbd
4bch

4bcl
4bc3
4bcé
4bc9

4bca
4bcc
4bcf
4badz

4bd3
4bd4
4bds

4bdé
4bd?
4bdsg
4bdb
4bdc
4bdd

4bed
4be3
4bed
4beb6
4be?

4be8
4bea
4ibed
4bee
dbef

4bfa

4bf2

4bf5

4bf8

69

60
226c4c
c9

gedd
cdef 4b
cdfddb
c9

Ped 6
cdefdb
cdfdib
c9

Te
b7
c8

e5
4f
cd6adb
el
23
c3d34b

21684c
le
e6f8
bl

77

e62p
216b4c
bé

77

cH

Beda

cd3fdéc

cddcdc

Ja6bdc

-

read:

wo wp

write:

T > we ~»

rmsqg:

LYY

1 4
setfunc:

wp wp

waitio:

rewait:

mov l,c
mov h,b
shld iod
ret

:read next disk record (assuming disk/trk/sec/dma

mvi c,readf ;set to read function

call setfunc

call waitio ;perform read function

ret ;may have error set in reg-a

sdisk write function

mvi c,writf

call setfunc ;set to write function
call waitio

ret ;may have error set

utility subroutines
:print message at h,1 to 4

mov a,m

ora a ;zero?

rz

more to print

push h

mov c,a

call conout

pop h

inx h

jmp prmsg

set function for next i/o (command in reg-c)

1xi h,iof ;io function address

mov a,m ;get it to accumulator for maskin
ani 111110008b jremove previous command
ora c :set to new command

mov m,a ;replaced in iopb

the mds-800 controller req's disk bank bit in sec
mask the bit from the current i/o function

ani 8126200b smask the disk select bit
1xi h,ios ;address the sector selec
ora M ;select proper disk bank
mov m,a :set disk select bit on/o
ret

mvi c,retry ;max retries before perm error
start the i/0 function and wait for completion
call intype ;in rtype

call inbvte ;clears the controlleér

l1da dbank ;set bank flags

46

4bfb
4bfc
4bfe
4cD9
4cP3
4c05
4cB6
4cPp8

4cBb
4cBd
4che

4clo
4cl3
4cl5

4cl8

4clb
4cld

4¢c20
4c21

4c24
4c27
4¢c28
4c2b
4c2c
4c2e

4c31l

4c32
4c35

b7
3e67
B64c
c28bdc
3379
78
d37a
c3ld4c

d389
78
d38a

cd594c¢
e694
calfdc

cd3fdc

fed?2
ca324c

b7
c2384c

cd4cdc
17
da324c
1f
e6fe
c2384c

c9

cdédcdc
c3384c

iodrl:

waitg:

~p wa

~e wo e we

-s

“-a wa

y
wready:

error:

SO Ne %o we Ny S w5 wy e w2 £~

ora a 32zero 1f drive 6,1 and nz

mvi a,iopb and 8ffh ;low address for iopb
mvi b,iopb shr 8 ;high address for iopb
jnz iodrl sdrive bank 17

out ilow ;low address to controlle
mov a,b

out ihigh shigh address

jmp waitd ;to wait for complete
:drive bank 1

out ilow+ldh :88 for drive bank 149
mov a,b

out ihigh+16h

call instat ;wait for completion
ani iordy sready?

jz waitp

check io completion ok

call intype smust be 10 complete (88)
26 unlinked i/o complete, 91 linked i/o comple
190 disk status changed 11 (not used)

cpi 1db sready status change?

jz wr eady

must be 86 in the accumulator
ora a
jnz werror ;some other condition, re

check 1i/0 error bits

call inbyte

ral

jc wready ;unit not ready
rar

ani 11111118Db sany other errors?
jnz wWerror

read or write is ok, accumulator contains zexro
ret

;not ready, treat as error for now
call inbyte jclear result byte
jmp trycount

sreturn hardware malfunction (cxc, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
- deleted data (accepted as ok above)

- Ccrc error

- seek error

address error (hardware malfunction)

- data over/under flow (hardware malfunct
- write protect (treated as not ready)

~ write error (hardware malfunction)

- not ready

SOk WNOHR
|

47

4c38
4c39

4c3c
4cle

4c3¢f
4c4?2
4c43
4c46
4c48
4c49
4cdb

4cdc
4c4f
4c50
4c53
4¢SS5
4c56
4c58

4c59
4cs5c
4c5d
4co6d
4c62
4c63
4¢65

4c66

4¢cé67
4cé68
4c69
4cba
4céb
4céec

84
c2f24b

Jegl
c9

3a664c
b7
c2494c
db79
c9
db8ss
c9

3a664c
b7
c2564c
db7b
c9
dbB8b
c9

3Ja664c
b7
c2634c
db78
c9
dbg8g
c9

na

88
24
21

21
8020

e T we Ve v Nwe wWe

-y Wy

-y wp

intype:

intypl:

inbyte:

inbytl:

instat:

instal:

(accumulator bits are numbered 7 6 5 4 3 2 1 @)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable, 1in any case, the not ready conditio
treated as a separate condition for later improve

rycount:

register ¢ contains retry count, decrement 'til 2
dcr c
inz rewait ;for another try

cannot recover from error
mvi a,l ;error code
ret

intype, inbyte, instat read drive bank 96 or 19
1lda dbank

ora a

jnz intypl ;skip to bank 18

in rtype

ret

in rtype+ldh :78 for 8,1 88 for 2,3
ret

lda dbank

ora a

jnz inbytl

in rbyte

ret

in rbyte+lohn

ret

lda dbank

ora a

jnz instal

in dstat

ret

in dstat+1l0h

ret *

data areas (must be in ram)

db 7} ;:disk bank B89 if drive 0,1
: 19 if drive 2,3

;10 parameter block

db 86h ;normal i/0 operation

db readf ;10 function, initial read

db 1l ;number of sectors to read

éb offset ;track number

db 1l :sector number

dw buff ;10 address

define ram areas for bdos operation

48

4cbe+=
4cbe+
4cee+t+
4498+
4dla+
433c+
4d4c+
446b+
4d7b+
4d9%a+
4daa+=
81l3c+=
4daa

begdat

dirbuf:

alvd:
csvd:
alvl:
csvl:
alvz:
c8v2:
alv3:
csv3:
enddat
datsiz

endef
equ

ds
ds
ds
ds
ds
ds
ds
ds
equ
egu
end

$
128

16
31

31
16
31

$-begdat

49

;directory access buffer

APPENDIX C: A SKELETAL CBIOS

skeletal cbios for first level of cp/m 2.0 altera

6814 = msize equ 20 ;cp/m version memory size in kilo
; "bias" 1s address offset from 348¢6h for memory sy
H than 16k (referred to as "b" throughout the text)
0000 = bias equ (msize-20)*14924
3400 = ccp equ 3480h+bias ;base of ccp
3cd6 = bdos equ ccp+866h ;base of bdos
4ag0 = bios equ ccp+l6d8h ;base of bios
20pn4 = cdisk egu Add4h scurrent disk number #=a,...,l5=p
pRB3 = iobyte equ @69d3h ;intel i/0 byte
4a6¢ org bios ;origin of this program
gB2c = nsects equ ($-ccp) /128 ;warm start sector count
; jump vector for individual subroutines
4a8d cl39cda jmp boot ;jcold start
4263 c3ab4a wboote: jmp wboot jwarm start
4a06 c3114b jmp const ;jconsole status
4a09 c3244b jmp conin ;console character in
4adc c3374b jmp conout ;console character out
4apf c3494b jmp list ;list character out
4al2 c34d4b jmp punch ;punch character out
4al5 c34f4b jmp reader ;reader character out
4al8 c3544b ymp home ;move head to home positi
4alb c35a4b jmp seldsk ;select disk
4ale c37d4b jmp settrk ;set track number
4a2l c3924b jmp setsec ;set sector number
4a24 c3addb jmp setdma ;set dma address
4a27 c3c34b jmp read ;read disk
4a2a c3dé64b jmp write swrite disk
4a2d c34bi4b jmp listst ;return list status
4a39 c3a74b jmp sectran ;sector translate
: fixed data tables for four-drive standard
; ibm-compatible 8" disks
: disk parameter header for disk @9
4a33 734a@@ dpbase: dw trans, 290606h
4a37 beo0oo aw Poeoh,208008N
4a3b fo4c8d dw dirbf,dpblk
4al3f ec4did dw chkdé,alldd
: disk parameter header for disk A1l
4a43 734a08 dw trans, 9066h
4247 000200 aw 0000h,290800
4a4b fd4c8d dw dirbf,dpblk
4a4f fc4d8ft dw chk9l,alldl
; disk parameter header for disk @2
4a53 734ap¢ dw trans,3d80h
4a57 000008 aw 0000h,0000nh
4a5b fd4c8a dw dirbf,dpblk
4a5f dcdeae dw chk@92,alle?2

50

4263
4a67
4abb
da6f

XD
4alb
4a7f
4a83
4a87
4a8b

4a8d
4a8f
4299
4a91
4a92
4294
4a96
4a97
4a98
4a9%a

4a9c
4a9d
4aad
4aa3l

4aa6
4aa9
daab
4aae

4abl
4ab3
4abs

4abl

4aba
4abb
4abc
4abd
4abe
4acl

734a06
6opePR
fB4c8d
lcdecd

730368

1783829
15982838
141a06
1218064
1016

la@p
a3
67
28
£208
3fed
cP
po
19069
2200

af

326309
326400
cl3efia

318680
Pedd

cd5adb
cd544b

862c
fed?d
1682

210034

c5
as
es
4a
cd924b
cl

-

- we

trans:

i
dpblk:

(o2 A B TR TR]

oot:

wboot:

-y

.y ey

loadl:

disk parameter header

dw trans,0¢00h
dw 2026h,B80800
dw dirbf,dpblk
dw chk23,all@3

for disk 83

sector translate vector

98 be761311%4
db 23,3,9,15
db 21,2,8.,14
db 29,26,6,12
ab 18,24,4,19
db 16,22
;disk parameter block,
dw 26

db 3

db 7

db)

dw 242

dw 63

db 192

db 2

dw 16

aw 2

end of fixed tables

SESFS 5:6:7:8
9,10,11,12
13,14,15,16
17,18,19,28
21,22,23,24
25,26

¢
’

;sectors
;sectors
;sectors
tsectors
;8ectors

common to all disks
;sectors per track
1block shift factor
:block mask
;:null mask
;disk size-1
;directory max
ralloc @
salloc 1
:check size
strack offset

individual subroutines to perform each function
:simplest case is to just perform parameter initi

;zero in the accum
;clear the iobyte
:1Sselect disk zero
sinitialize and go to cp/

;simplest case is to read the disk until all sect

Xra a

sta iobyte
sta cdisk
Imp gocpm
1xi sp,8dh
mvi c,p
call seldsk
call home
mvi b,nsects
nvi c,d
mvi 4,2

note that we begin by

;use space below buffer f
;select disk 8

igo to track 99

:b counts 4 of sectors to

:Cc has the current track

;13 has the next sector to
reading track @, sector 2 s

contains the cold start loader, which is skipped

1xi h,ccp

;load one more sector
push b ;save
push d ;save
push h ;jsave
mov c,d

call setsec

pop b

51

;base of ¢cp/m (initial lo

sector count, current track
next sector to read
dma address

;jget sector address to register c
;5et sector address from register
;irecall dma address to b,c

4ac?
4ac3

4ach
4dacH
4achb

dace
facf
4ad2
4ad3
4ad4
4ads
4adé

4ad9
4ada
4adb
4add

4aed
4ae?2

4ael
daed
4ae5
daeb
4ae9
4aea
4daeb
4aec

jaef
4afl
4daf4
d4af7

4afa
4afd
4668

4b@3
4bd6

4bB9
4bda
4baada
4bde

c5S
cdad4b

cdc34b
fedo
c2abda

el
1180449
19
dl
cl
@5
caefia

14

7a
felb
daba4a

l6/A1
gc

(035
ds
e5
cd?7d4b
el
al
cl
c3bada

3ec3

320009
21834a
2201090

324592
21863c
220689

gl8pe0
cdadib

fb
3ag4949
4f
c3gg34

LY

.y e e Wy

L3 ~a ~

-

ocpm:

push b sreplace on stack for later recal
call setdma ;set dma address from b,c

drive set to @, track set, sector set, dma addres
call read

cpi 28h sany errors?

jnz wboot sretry the entire boot if an erro

no error, move to next sector

pop h ;recall dma address

1xi d,128 ;dma=dma+128

dad ad :new dma address 1s in h,1l

pop d ;recall sector address

pop b ;recall number of sectors remaini
der b ;sectors=sectors—1

jz gocpm ;transfer to cp/m 1f all have bee

more sectors remain to load, check for track chan
inr a

mov a,d ;8ector=27?, if so, change tracks
cpi 217
je loadl ;carry generated if sector<27

end of current track, go to next track
mvi 4,1 ;begin with first sector of next
inr C ;track=track+l

g§ave register state, and change tracks

push b

push d

push h

call settrk ;track address set from register
pop h

pop d

pop b

jmp loadl ; for another sector

end of load operation, set parameters and go to c

mvi a,dc3h ;c3 is a jmp instruction

sta 2 ; for jmp to wboot

1xi h,wboote ;wboot entry point

shld 1 ;jset address field for jmp at @
sta 5 ;for Jjmp to bdos

1xi h,bdos ;bdos entry point

shld 6 ;address field of jump at 5 to bd
1xi b, 86h sdefauvlt dma address is 88h

call setdma

ei ;enable the interrupt system

lda cdisk ;get current disk number

mov c,a ;send to the ccp

jmp cep igo to cp/m for further processin

52

4bl1
4b21
4b23

4b24
4b34
4b36

4b37
4b38
4b48

4b4S
4bda

4b4b
4bdc

4b44d
4bde

4b4f
4b51
4b53

4b54
4b56
4bS9

4bSa
4b54
4b5e
4b61l

e @
c9

e67f
c9

79

c9

79
c9

aft
co

79
c9

3ela
e67f
c9

dedd
cd?7d44b
c9

210089
79
J2efdc
fedd

onst:

listst:

3
’

punch:

- W

reader:

e LY wp wa we o N Sy

H
seldsk:

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

;jconsole status, return @ffh if character ready,

ds 18h ;8pace for status subrouvtine
mvi a,éph
ret

sconsole character into register a

ds 1dh sspace for input routine
ani 7fh sstrip parity bit
ret

;console character output from register c

mov a,c ;get to accumulator
ds 16h ;space for output routine
ret

;1list character from register c
mov a,c ;character to register a
ret ;null subroutine

;return list status (8 if not ready, 1 1f ready)
Xra a 18 is always ok to return
ret

:punch character from register c

mov a,c ;character to register a
ret snull subroutine

;read character into register a from reader devic

mvi a,lah senter end of file for now (repla
ani 7fh ;remember to strip parity bit
ret

i/0 drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

;move to the track 0@ position of current drive
translate this call into a settrk call with param

mvi c,® sselect track @
call settrk
ret ;we will move to PP on first read

;select disk given by register c

1xi h,080Ph ;error return code

mov a,c

sta diskno

cpi 4 ;must be between 8 and 3

53

4b63
4b64

4b6e
4b71
4b72
4b74
4b75
4b76
4077
4b78
4b7b
4b7c

4b74
4ble
4b81
4b91]

4b92
4b93
4b96
4bab

4ba?
4ba8
4ba9
4baa
4bac

4bad
4bae
4baf
4bb2
4bc2

4bc3
4bd3

4bdé

ag

Jaefdc
6f
26049
29

29

29

29
11334a
19

c9

79
32e94c

c9

79
32ebdc

c9

eb
g9
6e
26088
c9

69
60
22ed4c

c9

c3e64b

-y

LYY

settrk:

.
1’

setsec:

a
’

sectran:

14
setdma:

M we
®
o]
Q,

~o we

write:

’
waitio:
7
’

rnc ;no carry if 4,5,...

disk number is in the proper range

ds 18 ;space for disk select
compute proper disk parameter header address
lda diskno

mov l,a ;1=disk number 6,1,2,3
mvi h,d :high order zero

dad h ;%2

dad h %4

dad h ; *8

dad h +*]16 (size of each header)
1xi d,dpbase

dad d ;hl=_ dpbase (diskno*16)

ret

;set track given by register c

mov a,c

sta track

ds 18h ;space for track select
ret

:set sector given by register c

mov a,c

sta sector

ds 106h ;space for sector select
ret

;translate the sector given by bc using the
;translate table given by de

xchg shl=_trans

dad b shl=,trans(sector)
mov 1l1,m ;1 = trans(sector)
mvi h,o :hl= trans(sector)
ret swith value in hl

;set dma address given by registers b and ¢

mov l,c ;jlow order address

mov h,b shigh order address

shld dmaad ;save the address

ds 18h ;space for setting the dma addres
ret

;perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write) R

ds 18h ;set up read command

jmp waitio ;to perform the actual i/o

;perform a write operation
ds 16h ;jset up write commanu

;enter here from read and write to perform the ac

operation, return a 66h in register a if the ope
properly, and #lh if an error occurs during the r

54

4beb
4ceb
4ce8

4ce9
4ceb
4ced
4cef

4cf@
4cfd
44379
438¢f
4dae
4dcd
4dec
44fc
defc
4elc

4e2c
913c
delc

3edl
c9

||

- wp wWp W Wy

wp wE %A we wa wa

track:
sector
dmaad:
diskno

3
’

begdat
dirbf:
allgo:
allel:
alle2:
all@3:
chkdéb:
chkpPl:
chkB2:
chkg3:

r
enddat
datsiz

X3

in this

ds
mvi
ret

case,

256
a,l

we have saved the disk number in 'd

the track number in ‘'track' (8-76
the sector number in 'sector®' (1-
the dma address in 'dmaad' (9-655
;space reserved for i/o drivers
serror condition

;replaced when filled-in

the remainder of the cbios 1s reserved uninitiali
data area,
system memory image (the space must be available,
between "begdat" and “enddat").

however,

ds
ds
ds
ds

scratch
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds

equ
equ
end

oD

and does not need to be a part of the

; two bytes for expansion
; two bytes for expansion
;jd@irect memory address
:3@lsk number ©-15

ram area for bdos use

$

128

31
31
31
31
16
16
16
16

$

;beginning of data area
;scratch directory area
;allocation vector
sallocation vector
;allocation vector
;allocation vector
;check vector 0
scheck vector 1
:scheck vector 2
;check vector 3

w N~

:end of data area

$-begdat;size of data area

35

0190

gol4

88020
3489
3cod
4a040

01909
8193
9196

2198

01l0a
8led
0110
8111
8112
6113
g115

plls
2119
Blla
g¢llc

PLl1f
8129

318933
218033
26908

Bedl

cdpgas
118400
19

dc

79
felb
dafagl

24

78
feg2
dafgel

fb
76

APPENDIX

s wu

msize

“bias"

wa wp

bias
ccp

bdos
bios

- we

uE ws WmE wE We NP Ny

gstart:

rdStrk:

rd$sec:

D: A SKELETAL GETSYS/PUTSYS PROGRAM

combined getsys and putsys programs from Sec 4.
Start the programs at the base of the TPA

org Alééh
equ 20 ; size of cp/m in Kbytes

is the amount to add to addresses for > 2@k
(referred to as "b* throughout the text)

egu (msize-29)*1824
equ 34@8Bh+bias

equ ccp+9899n

egu ccp+l6d8h

getsys programs tracks 6 and 1 to memory at
3880h + bias

register usage

a (scratch register)

b track count (8...76)

c sector count (l...26)

d,e (scratch register pair)

h,1 load address

sp set to stack address

; start of getsys
1xi sp,ccp-0886h ; convenient plac
1xi h,ccp-98088h : set initial loa
mvi b,d ;s start with trac
; read next track

mvi c,1 $ each track star
call read$sec : get the next se
1xi 4,128 ; offset by one s
dad d : (hl=hl+128)
inr Cc : next sector
mnov a,c ; fetch sector nu
cpi 27 : and see if la
jc rdsec ; <, do one more

; arrive here at end of track, move to next track

inr b ; track = track+l
mov a,b ; check for last
cpi 2 ; track = 2 ?

jc rdsStrk ; <, do another

; arrive here at end of load, halt for lack of anything b

el
hlt

56

0200

2200
02023
82066

2208

8280a
g2ed
210
8211
9212
213
8215

A218
B219
B2la
2lc

p21f
229

2304

8300
9301
#3092

342
8343

318833
2184033
p609d

Gedl

cdgeo4
118089
19

B¢

79
felb
daBag?2

g4

78
fed?2
dad892

fb
76

c5
e5

el
cl

~e we WA

move to

org ($+2100h) and 0f£G8h
put$sys:
1xi sp,ccp-9886h
1xi b,ccp-0988h
mvi b,?
wrStrk:
mvi c,l
wrSsec:
call writeSsec
1xi d,128
dad d
inr c
mov a,c
cpi 27
jc wrSsec
¢ arrive here at end of track,
inr b
mov a,b
cpi 2
je wrStrk
; done with putsys, halt for lack
ei
hlt

wa ws W

-a

we wg wme Wy wWe BE we

putsys program, places memory image starting at
3888h + bias back to tracks 8 and 1
start this program at the next page boundary

convenient plac
start of dump
start with trac

start with sect

write one secto
length of each
<hl>=<hl> + 128
<c> = <¢c> + 1
see if

past end of t
no, do another

next track

ay wWr wa wa

track = track+l
see if
last track

no, do another

of anything bette

: user supplied subroutines for sector read and write

$ move to next page boundary

or

read$sec:

wy %A Wl Ny

push b
push h
3 user defined read operation goes here
ds 64
pep h
pop b

g ($+01@6h) and 2£f00h

read the next sector

track in ,
sector in <c>
dmaaddr in <hl>

57

6344 c9 ret
3400 org ($+81908h) and BE££f46H ; another page bo
write$sec:

; same parameters as read$sec

8400 c5 push b
0491 e5 push h
; user defined write operation goes here
2492 ds 64
9442 el pop h
#443 cl pop b
0444 c9 ret

; end of getsys/putsys program

B445 end

58

poao

0914

gope
3400
4ap8
0308
4200
1969
0832

I nnuwnnin

PPP0 010200
9003 1632
#0685 210634

ME NP NG WP WE WA NP AL WP WP WG WP Ne WP e WA AR wa

APPENDIX E: A SKELETAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track @8, sector 91 (the first sector on the
diskette)., we assume that the controller has loaded
this sector into memory upon system start-up (this pro-
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running), the cold start loader brings the cp/m system
into memory at "loadp" (3488h + "bias"). 1in a 26k
memory system, the value of “bias" is 6886h, with large
values for increased memory sizes (see section 2), afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + "bias," the cold start loader is not used un-
til the system is powered up again, as long as the bios
is not overwritten, the origin is assumed at 08206h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used.

org) ; base of ram in cp/m
msize egqu 29 ; min mem size in kbytes
bias egu (msize—-20)*19024 ; offset from 2Pk system
ccp equ 3406h+bias ; base of the ccp
bios equ ccp+lé6dgh ; base of the bios
biosl equ #3090h ; length of the bios
boot egu bios
size equ bios+biosl-ccp ; size of cp/m system
sects equ size/128 ; # of sectors to load

-

begin the load operation

colad:
1xi b,2 ;s b=@, c=sector 2
mvi d,sects ¢ d=% sectors to load
1xi h,ccp ; base transfer address

lsect: :; load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,

into the address given by <hl>

branch to location "cold” if a read error occurs

59

p0d8
000b

g06b
gB6c

po6f
6072

P73
6874
PB75
6077

B 7a
ge7c
2@74a
2089

c36bd?d

15
cabd4a

318900
39

gc

79
felb
dadB8ppg

pedl
@4
c3e809

wy er we W g

I T3 2233333222333 2232223832223 2 222 SRR RaRERRa SRR
*
* user gsupplied read operation goes here..,
x
ARk kR ki hAhhokrrkdedk Cordedkdddkdk ks khk ki

jmp past$Spatch ; remove this when patche
ds 60h
past$patch:
; go to next sector if load is incomplete
dcr d : sects=sects-1
jz boot ; head for the bios
: more sectors to load
; we aren't using a stack, so use <sp> as scratch registe
: to hold the locad address increment
1xi sp,128 ; 128 bytes per sector
dad sp ; <hl> = <nl> + 128
inr c : sector = sector + 1
mov a,c
cpi 27 ; last sector of track?
jc lsect ; no, go read another
» end of track, increment to next track
mvi c,l s sector =1
inr b :+ track = track + 1
jmp lsect ; for another group
end ; of boot loader

60

Vo~V & WK

44:

WE %g % WP WP g WP NE mE We we wp WA WO NR WE WP« W N WO NP wm wp mg Wy ME M NE wp WE W Wy Wy W g wEm wWI wE we em ME WP W g WP ™E we W wWE WP WP W

APPENDIX F: C(P/M DISK DEFINITION LIBRARY

CP/M 2.0 disk re-definition library

Copyright {(¢) 1979
Digital Ra:search
Box 578

Pacific Grove, CA
93959

CP/M logicel disk drives are defined using the

macros given below, where the sequence of calls
is:

disks n

diskdef parameter-list-@
diskdef parameter-list-l
diskdef parameter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=9,1,...,n-1)

each parameter-list-i takes the form
dn,fsc,lsc,[skf} ,bls,dks,dir,cks,ofs, [4]

where

dn is the disk number 8,1,...,n-1

fsc is the first sector number (usually 8 or 1)
lsc is the last sector number on a track

skf is optional "“skew factor" for sector translate
bls is tne data block size (1824,2848,...,16384)
dks is tne disk size in bls increments (word)

dir is tne number of directory elements (word)

cks is the number of dir elements to checksum

ofs is the number of tracks to skip (word)

[9] is an optional @ which forces l16K/directory en

for convenience, the form

dn,dm
defines disk 4n as having the same characteristics as
a2 previously defined disk dm,

a standard four drive CP/M system is defined by

disks 4

diskdef 0,1,26,6,1024,243,64,64,2
dsk set 2

rept 3
dsk set dsk+1

diskdef $dsk,@

endm

endec

the value of “begdat"” at the end of assembly defines t

61

~»

disks
ndisks
dpbase

dsknxt

dsknxt

.
4

dpbhdr
dpb&dn

~a leu
Q
o

beginning of the uninitialize ram area above the bios,
while the valve of "enddat" defines the next location

following the end of the data area, the size of this

area is given by the value of *“datsiz" at the end of t
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

macro dn
define a single disk header list

dw Xxlt&dn,0900dh ;jtranslate table

dw 0006h,d384068h0 ;scratch area

dw dirbuf,dpb&dn ;dir buff,parm block
dw csv&dn,alvsadn scheck, alloc vectors
endm

macro nd
define nd disks

set nd ;:;for later reference
equ $;base of disk parameter blocks
generate the nd elements

set ()]

rept nd

dskhdr %dsknxL

set dsknxc+l

endm

endm

macro dn

equ S ;disk parm block
endm

macro data,comment

define a db statement

db data comment
endm

macro data,comment

define a dw statement

aw data comment
endm

macro m,n

greatest common divisor of m,n

produces value gcdn as result

(used in sector translate table generation)

set m ;;variable for m
set n ;svariable for n
set] ;3variable for r
rept 65535

set gcdm/gcdn

set gcdm - gcdx*gcdn

if gcdr = @

exitm

endif

62

189: gcdm set gcdn

116: gcdn set gcdr
111: endm

112: endm

113:

114: diskdef macro dn, fsc,lsc,skf,bls,dks,dir,cks,bfs,klé6

115: ;; generate the set statements for later tables
116: if nul 1lsc

117: ;; current disk dn same as previous fsc

118: dpb&dn equ dpb&fsc ;eauivalent parameters

119: als&dn equ als&«fsc ;same allocation vector size
120: css&dn equ css&fsc ;same checksum vector size
121: x1lt&dn equ xlt&fsc ;same translate table

122: else

123: secmax set lsc=(fsc) ; ;8ectors @...secmax
124: sectors set secmax+);:;number of sectors

125: alsegdn set (dks) /8 ::s5ize of allocation vector
126: if { (dks) mod b) ne 9

?27: alssdn set als&dn+l

124: endif

129: csss&dn set (cks)/4 ;;number of checksum elements
130: ;; generate the block shift valvue

131: blkval set bls/128 ;;number of sectors/block
132: blkshf set 8 ;;counts right 8's in blkval
133: blkmsk set 0 ;;01ills with 1's from right
134: rept 16 ;;once for each bit position
135: if blkval=1}

136: exitm

137: endif

138: :: otherwise, high order 1 not found vyet

139: blkshf set blkshf+l

148: blkmsk set (blkmsk shl 1) or 1

141: blkval set blkval/?2

142: endm

143: ;; generate the extent mask byte

144: pblkval set bls/1024 ; snumber of kilobytes/block
145: extmsk set 0 ;;E111 from right with 1's
146: rept 16

147: if blkval=1

148: exitm

149: endif

150: :: otherwise more to shift

151: extmsk set (extmsk shl 1) or 1

152: blkval set blkval/?2

153: endm

154: ;; may be double byte allocation

155: if (dks) > 256

156: extmsk set (extmsk shr 1)

157: endif

158: ;; may be optional [d] in last position

159: if not nul k16

160: extmsk set klé

161: endif

162: ;3 now generate directory reservation bit vector
163: dirrem set dir ;;4 remaining to process

63

164:
165:
166:
167:
168:
169:
178:
171:
172:
173:
174:
175:
176:
177:
178«
179:
180
131:
182:
183:
184:
185:
186:
187:
183:
189:
199:
191:
192:
193:
194:
145:
196:
197:
198:
199:
200
201:
202:
28 3:
204:
205:
206
207:
248:
209:
210«
211:
212:
213:
214:
215:
216:
217:
213:

[
1y

xlt&dn

xlt&dn

4

nxtsec
nxtbas

i
neltst
i
’

xlt&dn

nxtsec

nxtsec

nelts

set bls/32 ;;number of entries per block

set % fill with 1's on each loop
rept lé

if dirrem=0

exitm

endif

not complete, iterate once again
shift right and add 1 high order bit

set (dirblk shr i) or 89806h
if dirrem > dirbks

set dirrem-dirbks

else

set a

endif

endm

dpbhdr dn ; ;generate equ $
ddw §sectcrs,<;sec per track>
ddb g$blkshf,<;blcck shift>
dab tblkmsk,<;blcck mask>

ddb gextmsk,<;extnt mask>

ddw $(dks)-1,<;aisk size-=1>
ddw $(dir)-1,<;airectory max>
ddb ¢dirblk shr 8,<;allocy>
ddb gdirblk and 0ffh,<;allocl>
ddw $(cks)/4,<;check size>
ddw $0€f€s,<;o0ffsetd>

generate the translate table, if requested
if nul skE

equ 2 t1no xlate table
else

if skf = @

equ) ;no xlate table
else

generate the translate taple

set 7] ; siext sector to fill
set 9 ; imcves by one on overflow
gcd $sectors,skf

gcdn = gcd(sectors,skew)

set sectors/gcdn

neltst is number of elements to generate
before we overlap vrevious elements

set neltst ;;counter

equ S ;translate table
rept sectors ;;once for each sector
if sectors < 256

ddb snxtsec+ (fsc)

else

ddw gnxtsec+(fsc)

endif

set nxtsec+(skf)

if nxtsec >= sectors

set nxtsec-sectors

endif

set nelts-1

if nelts = @

64

219: nxtbas set nxtbas+l

229: nxtsec¢ set nxtbas

221: nelts set neltst

222: endif

223: endm

224: endif ;;end of nul fac test

225: endif :;end of nul bls test

226: endm

227:

228: defds macro lab, space

229: lab: ds space

230: endm

231:

232: 1lds macro 1b,dn,val

233: defds 1b&dn, ¥val&dn

234: endm

235: ;

236: endef macro

237: ;; generate the necassary ram data areas
238: begdat equ $

239: dirbuf: ds 128 ;directory access buffer
248: dsknxt set B

241: rept ndisks ;j;once for each disk
242: lds alv,%dsknxt ,als

243: lds csv,%dsknxt,css

244: dsknxt set dsknxt+l

245: endm

246: enddat equ $

247: datsiz equ $-begdat

248: ;; db 8 at this point forces hex record
249; endm

65

s PO va s

=
QWO JO U b WS

—
w N

14:

X3

-
A wn
ne

17:
18:
19:
26:
21:
22:
23:
24:
25:

27:
28:
29:
390:
31:
32:
33:
34;:
35:

40:

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS,

;*****it*****************ittt***i*t***********t**t*!**
. X b 4
P * Sector Deblocking Algorithms for CP/M 2.9 *
- X *x*
;**it*iit*i*ﬁ*********iittttt*t**********i*******it***
; utility macro to compute sector mask
smask macro hblk
;3 compute log2(hblk), return €x as result
3 (2 ** @x = hblk on return)
ey set hblk
ex set B
;3 count right shifts of @y until =1

rept 8

if gy = 1

exitm

endif
i @y is not 1, shift right one position
ey set €y shr 1
@x set ex + 1

endm

endm
;****i*t***itt**tk*t**iit*t***it*it*t****t**ttt*ti*t**
. x
e

CP/M to host disk constants *
X

;*t***i*t*tt*k***t**i********ii**ﬂ****iit*t*t*i**ti**t

-~
*

blksiz equ 2848 ;CP/M allocation size
hstsiz equ 512 ;host disk sector size
hstspt equ 29 ;host disk sectors/trk
hstblk equ hstsiz /128 ;CP/M sects/host buff
cpmspt equ hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-1 1 sector mask

smask hstblk jcompute sector mask
secshf equ ax 11og2 (hstblk)
;****tt*tt*******t****i********i******k***************
. X x
i BDOS constants on entry to write *
o % b3
;t***it*tt*tt**tti***i*i*i********i***k***iittttt****k
wrall equ @ ;write to allocated
wrdir equ 1 iwrite to directory
wrual egu 2 ;write to unallocated

LSRR RS S SRR RS ERRR Rl R SRR R R R R X RS RS R R R]

* X
* The BDOS entry points given below show the *
* code which is relevant to deblocking only, *
x *

A 2 de s e vt v e e vk vk o o sk e e ol e ok g dr Xk ke A A e e R e e ok A e ol W ot ol e e N O de o O e e

NP mp WP Wy wp my wE W

66

913:
94:
85
96:
97:
98:
99:
1900:
101:
1¢2:
103

; DISKDEF macro, or hand coded tables go here

dpbase egu $;disk param block base
’
boot:
wboot:
;ienter here on system boot to initialize
Xra a ;8 to accumulator
sta hstact :host buffer inactive
sta unacnt rclear unalloc count
ret
seldsk:
;1select disk
mov a,c :selected disk number
sta sekdsk ;seek disk number
mov l,a ;disk number to HL
mvi h,@
rept 4 smultiply by 16
dad h
endm
1xi d,dpbase ;base of parm block
dad d ;hl=,.dpb(curdsk)
ret
settrk:
;set track given by registers BC
mov h,b
mov l,c
shld sektrk ;track to seek
ret
setsec:
iset sector given by register c
mov a,c
sta seksec ;sector to seek
ret
setdma:
;set dma address given by BC
mov h,b
mov 1l,c
shld dmaadr
ret
sectran:
;translate sector number BC
mov h,b
mov l,c
ret

-

67

194: ;**********t********i***********ii**i*************i***

185: ;* *
196; ;* The READ entry point takes the place of *
187: ;* the previous BIOS defintion for READ. *
l148: ;* *

199:- ;*********************‘k*************i***i************t

118: read:

111: s;read the selected CP/M sector

112: mvi a,l

113: sta readop sread operation

114 sta rsflag ;must read data

115: mvi a,wrual

116: sta wrtype ;jtreat as unalloc

117: jmp rwoper ;to perform the read
i%g; ;**i************************************t********t****
12¢: ;* *
121: ;> The WRITE entry point takes the place of *
122: ;* the previous BIOS defintion for WRITE, *
123: ;* *

124: ;******************************t*****k*********t**i***
125: write:

126: swrite the selected CP/M sector

127: Xra a :B to accumulator
128: sta readop snot a read operation
129: mov a,c ;write type in ¢
139: sta wrtype

131: cpi wrual ;write unallocated?
132: jnz chkuna ;check for unalloc
133: ;

134: ; write to unallocated, set parameters

135: mvi a,blksiz/128 ;next unalloc recs
136: sta unacnt

137: lda sekdsk ;disk to seek

138: sta unadask sunadsk = sekdsk
139:; lhld sek trk

140: shld unatrk sunatrk = sectrk
141: lda seksec

142 sta unasec ;unasec = seksec
143: ;

144: chkuna:

145: scheck for write to unallocated sector
146; lda unacnt ;jany unalloc remain?
147: ora a

148: jz alloc sskip if not
149:

156: ; more unallocated records remain

151: dcr a s;unacnt = unacnt-1
152: sta unacnt

153: l1da sekdsk ;same disk?

154: 1xi h,unadsk

155: cmp m ;s sekdsk = unadsk?
156: jnz alloc ;skip if not

157: ;

158: ; disks are the same

68

159: 1xi h,unatrk

lé6@:. call sektrkcmp ;sektrk = unatrk?

161: jnz alloc ;skip if not

162: ;

163: ; tracks are the same

164: lda seksec s same sector?

165: 1xi h,unasec

166: cmp m ;seksec = unasec?

167: inz alloc ;skip if not

168: :

169: ; match, move to next sector for future ref

17@: -inr m ;unasec = unasec+l

171: mov a,m ;end of track?

172: cpi cpmspt ;count CP/M sectors

§;3: jc noovf ;skip 1if no overflow
4:

175: ; overflow to next track

176: mvi m, B ;unasec = 0

177: l1hla unatrk

178: inx h

179: shld unatrk ;unatrk = unatrk+l

180: ;

181: noovf:

182: ;match found, mark as unnecessary read

183: Xra a ;@ to accumulator

184: sta rsflag ;rsflag = 0

185: jmp rwoper sto perform the write

186: ;

187: alloc:

188: ;not an unallocated record, reguires pre-read

189: Xra a ;0 to accum

199 sta unacnt sunacnt = 0

191: inr a :1 to accum

192;: sta rsflag srsflag = 1

193: ;

194: ;*********************t***tﬁi*k***********************

195: . * *

1%6: ;* Common code for READ and WRITE follows *

197: ;* *

198: ;********************i*****!******************tt*****t
199: rwoper:

200: ;enter here to perform the read/write

2¢1: Xra a ;Zero to accum

202: sta erflag ;N0 errors (yet)
283: 1da seksec jcompute host sector
204: rept secshf

2905: ora a ;jcarry = @

286: rar ;shift right

207: endm

208: sta sekhst shost sector to seek
209:

21e: ; active host sector?

211: 1xi h,hstact shost active flag
212: nov a,m

213: mvi m,l ;always becomes 1

69

214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226+
227:
228:
229:
238:
231:
232:
233:
234:
235:
236:
237:
238:
239:
248:
241:
242:
243;
244:
245:
246:
247:
248:
249:
250;
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:

a
’

nomatch:

filhst:

match:

ora a ;was it already?
jz filhst ;£11]1 host if not

host buffer active, same as seek buffer?
lda sekdsk

1xi h,hstdsk ;same disk?
cmp m :sekdsk = hstdsk?
inz nomatch

same disk, same track?

1xi h,hsttrk
call sektrkcmp ;sektrk = hsttrk?
jnz nomatch

same disk, same track, same buffer?
lda sekhst

1xi h,hstsec :sekhst = hstsec?
cmp m
jz match ;skip if match

;proper disk, but not correct sector

lda hstwrt ;host written?
ora a
cnz writehst :clear host buff

;may have to f£ill the host buffer
lda sekdsk

sta hstdsk

lhld sektrk

shld hsttrk

lda sekhst

sta hstsec

1da rsflag ;heed to read?
ora a

cnz readhst ;yes, 1if 1

Xra a ;P to accum

sta hstwrt ;no pending write

;copy data to ox from buffer

lda seksec ;mask buffer number
ani secmsk ;least signif bits
mov l,a ;ready to shift
mvi h,od ;double count

rept 7 :shift left 7

dad h

endm

hl has relative host buffer address

I1xi d,hstbuf

dad d ;hl = host address
xchg ;:now in DE

lhld dmaadr ;get/put CP/M data
mvi c,128 :length of move

76

269:
270:
271:
272:
273:
274:
275:
276
277:
278:
279:
280 :
281:
282:
283:
284:
285:
286
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
391:
362:
393:
304:
305:
306:
307:
308:
389:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:

lda readop ;which way?

ora a

jnz rwmove ;skip if read
H write operation, mark and switch direction

mvi a,l

sta hstwrt shstwrt = 1

xchg s1source/dest swap
rwmove :

;C initially 128, DE is source, HL is dest

ldax d ssource character

inx d

mov m,a ;to dest

inx h

dcr c ;loop 128 times

jnz rwmove
7 data has been moved to/from host buffer

lda wrtype swrite type

cpi wrdir ;to directory?

lda erflag :in case of errors

rnz ;no further processing
; clear host buffer for directory write

ora a serrors?

rnz ;skip 1f so

Xra a 19 to accum

sta hstwrt s;buffer written

call writehst

lda erflag

ret
;i***************k*****i*******i****************t*****
» X x
’
il Utility subroutine for lé-bit compare *
P 4 . x
;*****************ii**********************************
sektrkcmp:

;HL = ,unatrk or ,hsttrk, compare with sektrk

xchg

1xi h,sektrk

ldax d ;low byte compare

cmp m ; same?

INnz ;return if not
B low bytes egual, test high 1s

inx a

inx h

ldax d

cmp m :1sets flags

ret

71

321:
322:
323:
324:
325:
326:
327:
328:
329:;
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
349:
341:
342:
343:
344;
345:
346:
347:
348:
349:
350
351:
352:
353:
354:
355:;
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
3790:

:**‘k********

. K *
;X WRITEHST performs the physical write to *
i the host disk, READHST reads the physical *
Hid disk. *
. * *
: *

;*************************t**************************

writehst:
shstdsk host disk #, hsttrk = host track #,
thstsec host sect #. write "hstsiz" bytes
;from hstbuf and return error flag in erflag.
sreturn erflag non—-zero if error
ret

’

readhst:
;hstdsk = host disk #, hsttrk = host track &,
;hstsec = host sect #. read "hstsiz" bytes
;into hstbuf and return error flag in erflag.
ret

-e

ek kT hkhkkhkhkhhxkhkhkkhhhhhkhhhRdkd W hkkkkkkhhkddhhkkkkdkkkkhkk

. N .4
P * Unitialized RAM data areas *
« % x
;*************************************.xi*************
sekdsk: ds 1 ;seek disk number
sektrk: ds 2 ;seek track number
seksec: ds 1 ;seek sector number
hstdsk: ds 1 ;host disk number
hsttrk: ds 2 s;host track number
hstsec: ds 1 shost sector number
sekhst: ds 1 ;seek shr secshf
hstact: ds 1 shost active flag
hstwrt: ds 1 ;host written flag

.
L

unacnt: ds 1 sunalloc rec cnt
unadsk: ds 1 slast unalloc disk
unatrk: ds 2 :last unalloc track
unasec: &8s 1 ;last unalloc sector

’

erflag: ds 1 ;error reporting
rsflag: ds 1 ;read sector flag
readop: ds 1 ;1 if read operation
wrtype: ds 1 ;write operation type
dmaadr: ds 2 ;last dma address
hstbuf: ds hstsiz shost buffer

’

72

371:
372:
373:
374;
375:
376:

A %A wE wA we

HAR AT AARN R AT AKX AR Kk kX ddok bk ok kak kb kk ke ko k&

x

* The ENDEF macro invocation goes here

| 4

¥
x
*

%ok okosrode ok ok ok ko ok Kk ok gk % de e sk dk g ok % i ke de sk ok % Kk vk ok ok vk ok ok ok sk d o gk ok ko ok ok ok ok ok

end

73

