
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP1M 2.2 USER'S GUIDE

COPYRIGHT (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. An rights reserved.
No part of this publicat10n may be reproduced, trRnc:n:'tted,
transcribeo, stored in 8 retrieval system, or translated into
any language or computer language. in anv form or bv anv
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written oermission of
Digital Research, Post Office Box 579, Pacific Grove,
California ~3950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof ann specWcally disclaims anv
implied warranties of merchantability or fitness for any parti
cular purpose. Further. Digital Research reserves the rig-ht
to revise this publication and to make changes from time to
time in the content hereof without ohligation of Digital
Research to notify any person of such revision or changes.

TrRdemArks

CP/M is a registered trademark of Digital Research.]\1P/M,
MAC, and SID are trademarks of Digital Research.

/

/"

CP1M 2.2 USER'S GUIDE

Cooyright (c) l::l]J
Digital Researcn, 30x S79
Pacitic ~rove, Calitornia

1. 4n vv~rview ot C2/~ 2.0 raci1itic3 . • • . 1

L.

.3.

Jser Interrace

Console Co~man~ 2rocessor (CC2) Intertace

• • • • • • J

· 4

4. S~Ar £nnance~ents •••..•••••••.•....••. J

~. BIP SnnanceT.ents • · :)

7. ~he XSU3 Function

5.

d.

~ .

(;.) Enhancement::;

JuuS Interrace Conventions.

C2/~ 2.0 ~e~ory Organization

. .

· 10

• • • 11

• • • 12

• 2."7

10. 3103 Oifferences •.•.•••

-- - - --------- -"----'----------'---'--'-----

· 23

1. AN OVERVIEW OF CP/M 2.e FACILITIES.

CP/M 2.~ is a high-performance single-console operating system
which uses table driven techniques to allow field reconfiguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, while maintaining upward compatibility from
previous versions of release 1. Features of CP/M 2.~ include field
specification of one to sixteen logical drives, each containing up to
eight megabytes. Any particular file can reach the full drive size
with the capability to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically
separated by user numbers, with facilities for file copy operations
from one user area to another. Powerful relative-record random access
functions are present in CP/M 2.~ whlch provide direct access to any
of the 65536 records of an eight megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a
BIOS-resident "disk parameter block" which is either hand coded or
produced automatically using the disk definition macro library
provided with CP/M 2.0. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. The macros use
this information to generate the appropriate tables and table
references for use during CP/M 2.~ operation. Deblocking information
is also provided which aids in assembly or disassembly of sector sizes
which are multiples of the fundamental 128 byte data unit, and the
system alteration manual includes general-purpose subroutines which
use the this deblocking information to take advantage of larger sector
sizes. Use of these subroutines, together with the table driven data
access algorithms, make CP/M 2.0 truly a universal data management
system.

File expansion is achieved by providing up to 512 logical file
extents, where eaCh logical extent contains 16K bytes of data. CP/M
2.~ is structured, however, so that as much as l28K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), thus maintaining compatibility with previous
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.0 which allow
immediate reference to any record of an eight megabyte file. Using
CP/M's unique data organization, data blocks are only allocated when
actually required and movement to a record position requires little
search time. Sequential file access is upward compatible from earlier
versions to the full eight megabytes, while random access
compatibility stops at 5l2K byte files. Due to CP/M 2.0's simpler and
faster random access, application programmers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules and utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account for
file attributes and user areas, while the CCP provides a "login"

(All Information Contained Herein is Proprietary to Digital Research.)

1

function to Ghange from one user area to another. ~ne CCP also
formats directory displays in a more convenient manner and accounts
for both CRT and hard-copy devices in its enhanced line editing
functions.

The sections below point out the individual differences between
CP/M 1.4 and CP/M 2.0~ witn the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 manuals.
Additional information dealing with CP/M 2.0 I/O system alteration is
presented in the Digital Research manual ~CP/M 2.0 Alteration Guide.~

(All Information Contained Herein is Proprietary to Digital Research.)

2

I

2. USER INTERFACE.

Console line processing takes CRT-type devices
three new control characters, shown with an asterisk
(the symbol nctl" below indicates that the
simultaneously depressed) :

into account with
in the list below
control key is

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl~l>1

ctl-R
ctl-U
ctl-x

removes and echoes last character
reboot when at beginning of line
physical end of line
backspace one character position*
(line feed) terminates current input*
(carriage return) terminates input
retype current line after new line
remove current line after new line
backspace to beginning of current line*

/

In particular, note that ctl-H produces the proper backspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single byte change). Further, the line
editor keeps track of the current prompt column position so that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMMAND PROCESSOR (CCP) INTERFACE.

There are four functional differences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level. The CCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *. *,' and
"SAVE" commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

where n is an integer value in the range 0 to 15. Upon cold start,
the operator is automatically "logged" into user area number 0, which
is compatible with standard CP/M 1.4 directories. The operator may
issue the USER command at any time to move to another logical area
within the same directory. Drives which are logged-in while
addressing one user number are automatically active when the operator
moves to another user number since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active
subsequent USER
is again assumed.

user number is maintained until changed by a
command, or until a cold start operation when user 0

Due to the fact that user numbers now tag individual directory
entries, the ERA *.* command has a different effect. In version 1.4,
this command can be used to erase a directory which has "garbage"
information, perhaps resulting from use of a diskette under another
operating system (heaven forbid!). In 2.0, however, the ERA *.*
command affects only the current user number. Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.0,
nowever, does not perform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

4. STAT ENHANCEMENTS.

The STAT program has a number of additional functions which
allow disk parameter display, user number display, and file indicator

/ manipulation. The command:

STAT VAL:

produces a summary of the available status commands, resulting in the
output:

Temp R/O Disk: d:=R/O
Set Indicator: d:filename.typ $R/O $R/W $SYS $DIR
Disk Status DSK: d:DSK:
User Status USR:
Iobyte Assign:
(list of possible assignments)

which gives an instant summary of the possible STAT commands. The
command form:

STAT d:filename.typ SS

where ~d:~ is an optional
unambiguous or ambiguous
format:-

Size
48
55

65536

Recs
48
55

128

Bytes
6k

12k
2k

drive name, and "filename.typ" is an
file name, produces the output display

Ext Acc
1 R/O A:ED.COM
1 R/O (A:PIP.COM)
2 R/W A:X.DAT

where the $S parameter causes the "Size" field to be displayed
(without the $S, the Size field is skipped, but the remaining fields
are displayed). The Size field lists the virtual file size in
records, while the "Recs" field sums the number of virtual records in
each extent. For files constructed sequentially, the Size and Recs
fields are identical. The "Bytes" field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration time, and thus the number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. In the case of random access, the
Size field gives the logical end-of-file record position and the Recs
field counts the logical records of each extent (each of these
extents, however, may contain unallocated "holes" even though they are
added into the record count). The "Ext" field counts the number of
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 128K bytes (8
logical extents) directly addressed by a single directory entry,
depending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

rfhe "Acc"
changed using

field gives the R/O or R/W access mode, which is
the commands shown below. Similarly, the parentheses

'--
(All Information Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP. COM file name indicate that it has the "system"
indicator set, so that it will not be listed in OIR commands. The
four command forms

STAT d:filename.typ $R/O
STAT d:filename.typ $R/W
STAT d:filename.typ $SYS
STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/O indicator
places the file (or set of files) in a read-only status until changed
by a subsequent STAT command. The R/O status is recorded in the
directory with the file so that it remains R/O through intervening
cold start operations. The R/W indicator places the file in a
permanent read/write status. The SYS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The" filename. typ" may be ambiguous or unambiguous, but in
either case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denoted by "d:" is
optional.

when a file is marked R/O, subsequent attempts to erase or write
into the file result in a terminal BOOS message

Bdos Err on d: File R/O

The BOOS then waits for a console input before performing a subsequent
warm start (a "return" is sufficient to continue). The command form

STAT d:DSK:

lists the drive characteristics of the disk named by "d:" which is in
the range A:, B:, ••• , P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity

8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries

e: Checked Directory Entries
le24: Records/ Extent

128: Records/ Block
58: Sectors/ Track

2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in Kilobytes. The directory size is listed next,
followed by the "checked" entr ies. The number of checked entr ies is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of each directory entry (le24 times 128 bytes, or

(All Information Contained Herein is proprietary to Digital Research.)

6

-,

I

128K in the example above). The number of records per block shows the
basic aI-location size (in the example, 128 records/block times 128
bytes per record, or 16K bytes per block). The listing is then
followed by the number of physical sectors per track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to skip lower-numbered disk areas allocated to other
logical disks. The command form

STAT DSK:

produces a drive characteristics table for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user numbers which have files on the
currently addressed disk. The display format is:

Active User : 0
Active Files: 0 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a list of user numbers
scanned from the current directory. In the above case, the active
user number is 0 (default at cold start), with three user numbers
which have active files on the current disk. The operator can
subsequently examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

(All Information Contained Herein is Proprietary to Digital Research.)

7

5. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of CP/M 2.0. All three functions take the form of file parameters
which are enclosed in square brackets following the appropriate file
names. The commands are:

Gn Get File from User number n
(n in the range 0 - 15)

w write over R/O files without
console interrogation

R Read system files

The G command allows one user area to receive data files from another.
Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4. The
command

PIP A:=A:*.*[G2]

copies all of the files from the A drive directory for user number 2
into the A drive directory of the currently logged user number. Note
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. 'rhe sequence of opera.tions shown below effectively moves PIP
from one user area to the next.

USER 0
DDT PIP. COM
(note PIP size

G0
USER 3
SAVE s PIP. COr-!

login user '3
load PIP to memory

s)
return to CCP
login user 3

where s is the integral number of memory ~pages~ (256 byte segments)
occupied by PIP. The number s can be determined when PIP. COM is
loaded under DDT, by referring to the value under the ~NEXT~ display.
If for example, the next available address is 1000, then PIP.COM
requires IC hexadecimal pages (or I times 16 + 12 = 28 pages), and
thus the value of s is 28 in the subsequent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent R/O status. If attempt is made to overwrite a R/O
file, the prompt

(All Information Contained Herein is Proprietary to Digital Research.)

8

nFSTINATION FILE IS RIO, DELETE (YiN)?

is issued. If the operator responds with the character "y" then the
file is overwritten. Otherwise, the response

** NOT DELETED **

is issued, the file transfer is skippped, and PIP continues with the
next operation in sequence. In order to avoid the prompt and response
in the case of RiO file overwrite, the command line can include the W
parameter, as shown below

PIP A:=B:*.COM[W]

which copies all non-system files to. the A drive from the B drive, and
overwrites any RiO files in the process. If the operation involves
several concatenated files, the W parameter need only be included with
the last file in the list, as shown in the following example

PIP A.DAT = B.DAT,F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers
if the R parameter is included, otherwise system files are not
recognized. The command line

PIP ED. COM = B:ED.COM[R]

for example, reads the ED. COM file from the B drive, even if it has
been marked as a RiO and system file. The system file attributes are

/ copied, if present.

It should be noted that downward compatibility with previous
versions of CPIM is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
e. If compatibility is required with non-standard (e.g., "double
density") versions of 1.4, it may be necessary to select 1.4
compatibility mode when constructing the internal disk parameter block
(see the "CP/M 2.0 Alteration Guide," and refer to Section 10 which
describes BIOS differences).

(All Information Contained Herein is Proprietary to Digital Research.)

9

6. ED ENHANCEMENTS.

The CP/M standard program editor provides several new facilities
in the 2.0 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the e~itor has the ~v"
(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the ~-v~ command. If you are
not familiar with the ED line number mode, you may wish to refer to
the Appendix in the ED user's guide, where the "v" command is
described.

ED also takes file attributes into account.
attempts to edit a read/only file, the message

** FILE IS READ/ONLY **

If the operator

appears at the console. The file can be loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to chonge the file attribute to R/W. If
the edited file has the "system~ attribute set, the message

"SYSTEM" FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again,
the STAT program can be used to change the system attribute, if
desired.

Finally, the insert mode ("i") command allows CRT line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

10

7. THE XSUB FUNCTION.

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to

~ include line input to programs as well as the console command
processor. The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BOOS function 10) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB
DDT
I$l.HEX
R
G0
SAVE 1 $2.COM

with a subsequent SUBMIT command:

SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followe6 by DDT which is sent the command lines
"IX.HEX" "R" and "G0" thus returning to the CCP. The final command
"SAVE 1 Y.COM" is processed by the CCP.

The XSUB program remains in memory, and prints the message

(xsub active)
-"

on each warm start operation to indicate its presence. Subsequent
submit command streams do not require the XSUB, unless an intervening
cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

8. BDOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 0005H, function number in
register C, and information address in register pair DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A = L and register B = H
upon return in all cases). A list of CP/M 2.0 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Note that a zero value is returned for
out-of range function numbers.

0 System Reset 19* Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 Write Sequential
3 Reader Input 22* Make File
4 Punch Output 23* Rename File
5 List Output 24* Return Login Vector
6* Di rect Console I/O 25 Return Current Disk
7 Get I/O Byte 26 Set DMA Address
8 Set I/O Byte 27 Get Addr (Alloc)
9 Print String 28* Write protect Disk

10* Read Console Buffer 29* Get Addr(R/O Vector)
11 Get Console Status 30* Set File Attributes
12* Return Version Number 31* Get Addr(Disk Parms)
13 Reset Disk System 32* Set/Get User Code
14 Select Disk 33* Read Random
15* Open File 34* Write Random
16 Close File 35* Compute File Size
17* Search for First 36* Set Random Record ~,

18* Search for Next

(Functions 28, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/O.

Direct Console I/O is supported under CP/M 2.0 for those
applications where it is necessary to avoid the BDOS console I/O
operations. Programs which currently perform direct I/O through the
BIOS should be changed to use direct I/O under BDOS so that they can
be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A = 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Function 10: Read Console Buffer.

The console buffer read operation remains unchanged except that
console line editing is supported, as described in Section 2. Note

r . also that certain functions which return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to the extreme left
margin). This new convention makes operator data input and line
correction more legible.

Function 12: Return version Number.

Function 12 has been redefined to provide information which
allows version-independent programming (this was previously the "lift
head" function which returned HL=0000 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = 00 for the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

/

~.

In the file operations described below, DE addresses a file
control block (FCB). Further, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file is accessed randomly. The default file control block
normally located at 005CH can be used for random access files, since
bytes 007DH, 007EH, and 007FH are available for this purpose. For
notational purposes, the FCB format is shown with the following
fields:

(All Information Contained Herein is Proprietary to Digital Research.)

13

Idrlfllf21/ /lf8Itllt2It3Iexlslls2Ircld01/ /ldnlcrlr0lrllr21

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ..• 31 32 33 34 35

where

dr drive code (0 - 16)
o => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl ••• f8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the
bit of these positions,
tl' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from 0 - 128

d0 .•• dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a l6-bit value with
low byte r0, and high byte rl

Function 15: Open File.

The Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as zero, but made no

(All Information Contained Herein is Proprietary to Digital Research.)

14

/

checks to assure compliance. Thus, the byte is cleared to ensure
upward compatibility with the latest version, where it is required.

Function 17: Search for First.

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to 0,
1, 2, or 3 is returned indicating the file is present. In the case
that the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A -* 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Although not normally required for application programs,
the directory information can be extracted from the buffer at this
posi tion.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from fl through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, out does allow complete flexibility to scan all
current directory values. If the dr field is not a question mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next.

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.>

15

Function 22: Make File.

The Make File operation is identical to previous versions of
CP/M, except that byte s2 is zeroed upon entry to the BOOS.

Function 23: Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 i·s returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range 0 to 3 is returned.

Function 24: Return Login Vector.

The login vector value returned by CP/M 2.~ is a l6-bit value in
HL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: write Pr~tect Current Disk.

The
protection
the disk,
message

disk write protect function provides temporary write
for the currently selected disk. Any attempt to write to
before the next cold or warm start operation produces the

Bdos Err on d: R/O

Function 29: Get R/O vector.

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant nit corresponds to drive A,
while the most significant bit corresponds to drive P. ~he R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Function 30: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2' above) can be
set or reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Her~~n is Proprietary to Digital Research.)

16

match, and changes the matched directory entry to contain the selected
indicatocs. Indicators fl l through f4 1 are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.

/ Indicators f5 1 through f8 1 and t3 1 are reserved for future system
expansion.

Function 31: Get Disk Parameter Block Address.

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two pur?oses. First, the disk parameter values can
be extracted for display and space ·computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, ap?lication
programs will not require this facility.

Function 32: Set or Get User Code.

An application program can change or interrogate the currently
active user number by calling function 32. If register E = FF
hexadecimal, then the value of the current user number is returned in
register A, where the value is in the range 0 to 31. If register E is
not FF, then the current user number is changed to the value of E
(modulo 32).

/'

Function 33: Read Random.

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r0), middle
byte next (rl), and high byte last (r2). CP/M release 2.0 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

Thus, in version 2.0, the r0,rl byte pair is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from 0 to 65535, providing access to any particular
record of the 8 megabyte file. In order to ?rocess a file using
random access, the base extent (extent 0) must first be opened.
Although the base extent mayor may not contain any allocated data,
this ensures that the file is properly recorded in the directory, and
is visible in DIR requests. The selected record number is then stored
into the random record field (r0,rl), and the BOOS is called to read
the record. U?on return from the call, register A either contains an

(All Information Contained Herein is Proprietary to Digital Research.)

17

error code, as listed below, or the value 00 indicating the operation
was successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current e~tent

04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

Function 34: write Random.

The write Random operation is initiated similar to the ~Read

Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the rando~ record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

switch as it does in sequential mode under either CP/M 1.4 or CP/M
2.~.

The error codes returned
random read operation with
indicates that a new extent
ove rflow.

by a random write are identical to the
the addition of error code 05, which
cannot be created due to directory

Function 35: Compute File Size.

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual~ file size which is, in effect, the record address of· the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536 in version 2.0. Otherwise, bytes r0 and rl
constitute a l6-bit value (r~ is the least significant byte, as
before) which is the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data 1s actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the
produce the random record position from a file
written sequentially to a particular point.
useful in two ways.

BOOS to automatically
which has been read or
The function can be

.....

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a ?articular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM. COM, the CCP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label ~ready" where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

20

,

which contain the
This particular
processing, and
development •

principal input line processor,
program shows the elements of
can be used as the basis for

called
random
further

"readc."
access

program

•***,
.* *,
;* sample random access program for cp/m 2.0 *
.* *,
.***,

0100

0000 =
0005 =
0001 =
0002 =
000...9 =
000a =
000c =
000f =
0010 =
0016 =
0021 =
0022 =

005c =
007d =
007f =
0080 =
000d =
000a =

;
reboot
bdos
·,coninp
conout
pstr ing
rstring
version
openf
closef
makef
readr
writer
·,
fcb
ranrec
ranovf
buff
·,cr
If

org

equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ

equ
equ

l00h

0000h
0005h

1
2
9
10
12
15
16
22
33
34

005ch
fcb+33
fcb+35
0080h

0dh
0ah

;base of tpa

;system reboot
;bdos entry point

;console input function
;console output function
;print string until '$'
;read console buffer
;return version r.umber
;file open function
;close function
;make file function
;read random
;write random

;default file control block
;random record position
;high order (overflow) byte
;buffer address

;carriage return
;line feed

·,.***,
.* *,
;* load SP, set-up file for random access *
.* *,
.***,

0100 3lbc0 lxi sp,stack
;

· version 2.0?,
0103 0e0c mvi c,version
0105 cd050 call bdos
0108 fe20 cpi 20h ;version 2.0 or better?
kH0a d2160 jnc versok

; bad version, message and go back
0l0d lllb0 lxi d,badver
0110 cdda0 call print
0113 c3000 jmp reboot

·,
versok:
·, correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

9116 ge9f mvi c,openf :open default fcb
9118 l15c9 lxi d,fcb
9llb cd959 call bdos
9lle 3c inr a :err 255 becomes zero
0llf c2379 jnz ready

: cannot open file, so create it
9122 rae16 mvi c,makef
9124 l15c0 lxi d,fcb
9127 cd950 call bdos
912a 3c inr a :err 255 becomes zero
kH2b c2370 jnz ready

: cannot create file, directory full
9l2e l13a0 lxi d,nospace
0131 cdda0 call print
0134 c30la0 jmr;> reboot :back to ccp

*
*

loop back to "ready" after each command

·,
.***,
.* *,
· *,
· *,
.***,
·,
ready:

file is ready for processing

0137 cde59 call readcom :read next command
9l3a 227d0 shld ranrec :store input record#
0l3d 217f9 lxi h,ranovf
0149 3699 mvi m,0 :clear high byte if set
9142 fe51 cpi 'Q' : qui t?
~H44 c2569 jnz notq

quit processing, close file
0147 ge19 mvi c,closef
9149 115c9 lxi d,fcb
914c cd059 call bdos
9l4f 3c inr a :err 255 becomes 9
9159 cab99 jz error :error message, retry
9153 c3099 jmr;> reboot : back to ccp

·,
.***,
.* *,
:* end of quit command, r;>rocess write *
.* *,
.***,
notq:
· not the quit command, random write?,

0156 fe57 cpi ' W'
0158 c2890 jnz notw

:
this is a random wr i te, fill buffer until cr

1a15b l14d0 lxi d ,da tmsg
015e cdda9 call print :data prompt

(All Information Contained Herein is proprietary to Digital Research.)

22

end of read loop, store 00
mvi m,0

~next to fill
~counter goes down
~end of buffer?

c,127 ~up to 127 characters
h,buff ~destination

next character to buff
b ~save counter
h ~next destination
getchr ~character to a
h ~restore counter
b ~restore next to fill
cr ~end of line?
erlooo

end, store character
m,a
h
c
rloop

mvi
lxi
~read

pUSh
push
call
pop
pop
cpi
jz
not
mov
inx
dcr
jnz

·,
er loop:

·,

r loop:

0178 36~0

0172 77
0173 23
0174 0d
0175 c2660

~161 0e7f
0163 21800

0166 c5
0167 e5
e168 cdc20
016b e1
t316c c1
016d fe0d
016f ca780

f-

017a
017c
017f
0182
0183
0186

0e22
115c0
cd050
b7
c2b90
c3370

·, write
mvi
1xi
call
ora
jnz
jmp

the record
c,writer
d,fcb
bdos
a
error
ready

to selected record number

~error code zero?
~ message if not
~for another record

*
*

~

.***,

.* *,
~* end of write command, process read
.*,
.***,

0189 fe52
018b c2b90

notw:

·, not a write command, read record?
cpi •R'
jnz error ~skip if not

018e 0e21
0190 115c0
0193 cd050
0196 b7
0197 c2b90

read
mvi
lxi
call
ora
jnz

random record
c,readr
d ,fcb
bdos
a ~return code 00?
error

was successful, write to console
cr1f ~new line
c,128 ~max 128 characters
h,buff ~next to get

,-- -

019a cdcf0
019d 0e80
019f 21800

01a2 7e
01a3 23
01a4 e67f
01a6 ca370
01a9 c5
01aa e5

wloop:

read
call
mvi
lxi

mov
inx
ani
jz
push
push

a,m
h
7fh
ready
b
h

~next character
~next to get
~mask parity
~for another command if aa
~save counter
~save next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23

0lab fe20
0lad d4cSk'
0lb0 el
0lbl cl
0lb2 0d
0lb3 c2a20
0lb6 c3370

cpi
cnc
pop
pop
dcr
jnz
jmp

putchr
h
b
c
wloop
ready

;graphic?
;skip output if not

; count=count-l

*
*

·,
.***,
.* *,
;* end of read command, all errors end-up here

· *,
.***,

0lb9 11590
0lbc cdda0
0lbf c3370

error:
lxi
call
jmp

d ,er rmsg
print
ready

*
*

·,
.****************************.***.***.******.*******,
.* *,
;* utility subroutines for console i/o
.*,
.** ••****************.********************.**.******,

0lc2 0e0l
01c4 cd050
0lc7 c9

getchr:
; read
mvi
call
ret

next console character to a
c,coninp
bdos

01c8 0elO2
01ca Sf
01cb cd050
0lce c9

putchr:
;write
mvi
mov
call
ret

character from a to console
c ,conout
e,a ;character to send
bdos ;send character

0lda d5
01db cdcf0
01de dl
01df 0e09
0lel cd050
01e4 c9

the buffer addressed by de until $
d
cr If
d ;new line
c,pstring
bdos ;print the string

;print
push
call
pop
mvi
call
ret

kJ lcf
0ldl
~ld4

01d6
0ld9

3e0d
cdc80
3e0a
cdcS0
c9

;
cr If:

·,
print:

;send
mvi
call
mvi
call
ret

car r iage
a,cr
putchr
a,lf
putchr

return line feed
; car r iage retur n

;line feed

r eadcom:

(All Information Contained Herein is Proprietary to Digital Research.>

24

:for another char
:overflow
:for another char

:bc = value * 2
:*4
:*8
:*2 + *8 = *10
:+digit

:carry if numeric

case, mask lower case bits
l0l$11llb

the next command line to the conbuf
d,prompt
print : command?
c, r s tr ing
d ,conbuf
bdos :read command line
line is present, scan it
h,0 ;start with 0000
d,conlin:command line
d :next command character
d :to next command position
a :cannot be end of command

of read, restore value in a
'0' : command
'a' :translate case?

zero, numeric?
, 0 '
10
endrd

next digit
h :*2
c,l
b,h
h
h
b
1
l,a
readc
h
readc

end
adi
cpi
rc
lower
ani
ret

:read
lxi
call
mvi
lxi
call
command
lxi
lxi
ldax
inx
ora
rz
not
sui
cpi
jnc
add-in
dad
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp

·,

·,

·,
0213 c630
0215 fe6l
0217 d8

endrd:

0218 e65f
02la c9

0204 29
0205 4d
02136 44
13207 29
0208 29
0209 09
0211Ja 85
02k1b 6t
020c d2f90
~20f 24
02lki c3f90

0lfd d630
0lff fe0a
13201 d2l30

0lf3 21000
0lf6 l17c0
0lf9 la readc:
~lfa 13
13lfb b7
I1Jlfc c8

0le5 l16b0
0le8 cdda0
0leb 0e0a
0led l17a0
0lf0 cd050

/

*
*

·,
.***,
.* *,
:* string data area for console messages
.*,
.***,
badver:

02lb 536f79 db ' sor ry, you need cp/m version 2$'
nospace:

023a 4e6f29 db 'no directory spaceS'
da tmsg:

024d 547970 db 'type data: $,
er rmsg:

~259 457272 db 'error, try again.$'
prompt:

026b 4e6570 db 'next command? $,

·,

(All Information Contained Herein is Proprietary to Digital Research.)

25

con1en ;length of console buffer
1 ;resu1ting size after read
32 ;length 32 buffer
$-consiz

027a 21
027b
027c
0021 =

.***,

.* *,
;* fixed and variable data area *
.* *,
.***,
conbuf: db
consiz: ds
conlin: ds
con1en equ

029c

02bc

;

stack:
ds

end

32 ;16 level stack

(All Information Contained Herein is Proprietary to Digital Research.)

26

9. CP/M ~.0 MEMORY ORGANIZATION.

Similar to earlier versions, CP/M 2.0 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration. Typical base addresses for popular memory sizes are
shown in the table below.

Module
CCP
BOOS
BIOS
Top of Ram

20k
3400H
3C0~H

4A00H
4FFFH

24k
4400H
4C00H
5A00H
5FFFH

32k
6400H
6C00H
7A00H
7FFFH

48k
A400H
AC00H
BA00H
BFFFH

64k
E400H
EC00H
FA00H
FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MDS-800 with standard IBM 8" floppy disk drives. The disk
layout is shown below:

Sector
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Track 00 Module
(Bootstrap Loader)
3400H CCP + 000H
3480H CCP + 080H
3500H CCP + 100H
3580H CCP + l80H
3600H CCP + 200H
3680H CCP + 280H
3700H CCP + 300H
3780H CCP + 380H
3800H CCP + 400H
3880H CCP + 480H
3900H CCP + 500H
3980H CCP + 580H
3A00H CCP + 600H
3A80H CCP + 680H
3B00H CCP + 700H
3B80H CCP + 780H
3C00H BOOS + 000H
3£80H BOOS + 080H
3D00H BOOS + l00H
3D80H BOOS + 180H
3E00H BOOS + 200H
3E80H BOOS + 280H
3F00H BOOS + 300H
3F80H BOOS + 380H
4000H BOOS + 400H

Track 01 Module
4080H BOOS + 480H
4100H BOOS + 500H
41B0H BOOS + 580H
4200H BOOS + 600H
4280H BOOS + 680H
4300H BOOS + 700H
4380H BOOS + 780H
4400H BOOS + 800H
4480H BOOS + 88~H

4500H BOOS + 900H
4580H BOOS + 980H
4600H BOOS + A00H
4680H BOOS + A80H
4700H BOOS + B00H
4780H BOOS + B80H
4800H BOOS + C00H
4880H BOOS + C80H
4900H BOOS + D00H
4980H BOOS + D80H
4A00H BIOS + 000H
4A80H BIOS + 080H
4B00H BIOS + l00H
4B80H BIOS + 180H
4C00H BIOS + 200H
4C80H BIOS + 280H
4D00H BIOS + 300H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4. The BOOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track 01. Thus, the CCP is 800H (2048
decimal) bytes in length, the BOOS is E00H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. In
version 2.0, the BIOS portion contains the standard subroutines of
1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27

10. BIOS.DIFFERENCES.

The CP/M 2.0 Basic I/O System differs only slightly in concept
from its predecesssors. Two new jump vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined. The skeletal form of these
changes are found in the program shown below.

~nop

in c
~0000 in hI produces select error
~a is disk number 0 ••• ndisks-l
~less than ndisks?
~return with HL = 0000 if not

number, return dpb element address

sector BC using table at DE
~HL = .tran
~single precision tran

~nop

b

number in c
h,sector
m,c

a

4000h
di skdef
boot

number
h,e
a,c
ndisks

disk
l,c
h ~*2

h ~*4

h ~ *8
h ~*16

d,dpbase
d ~HL=.dpb

listst ~list status
sectran ~sector translate
4

capacity drive
16*1024 ~bytes per block
bpb/128 ~records per block
65535/rpb ~max block number
0,1,58,3,bpb,maxb+l,128,e,2
1,1,58"bpb,maxb+l,128,0,2
2,0
3,1

~sector

lxi
mov
ret

ret

xra
ret

~ dr ive
lxi
mov
cpi
rnc
proper
mov
dad
dad
dad
dad
lxi
dad
ret

...

org
maclib
jmp

jmp
jmp
disks
large
equ
equ
equ
diskdef
diskdef
diskdef
diskdef

~

listst:

~

selsec:

·,
sectran:

~ transla te
xchg
dad

·,boot:

·,
seldsk:

1:
2:
3:
4 :
5:
6:
7 :
8: ~

9: bpb
rpb
maxb

10:
11 :
12 :
13 :
14 :
15 :
16 :
17:
18:
19:
20:
21 :
22:
23:
24:
25 :
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:

(All Information Contained Herein is Proprietary to Digital Research.)

28

48: . dad b again if double precision tran,
49: mov I,m ;only low byte necessary here
50: ; fill both H and L if double precision tran
51: ret ;HL = 11ssr
52: ;
53: sector: ds 1
54: endef
55: end

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jump
vector elements). The last two elements provide access to the
hLISTST" (List Status) entry point for DESPOOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1.4 release. It should be noted that
the 1.4 DESPOOL program will not operate under version 2.0, but an
update version will be available from Digital Research in the near
future.

The "SECTRAN" (Sector Number Translate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
subroutine. This mechanism allows the user to specify the sector skew
factor and translation for a particular disk system, and is described
below •

A macro library is shown in the listing, called DISKDEF,
included on line 2, and referenced in 12-15. Although it is not
necessary to use the macro library, it greatly simplifies the disk

F definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all CP/M 2.0 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which you can use to hand-code the
tables produced by the DISKDEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
·.....
DISKS n
DISKDEF ", ...
DISKDEF 1 , •..
·
DISKDEF n-l·.....
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-l (corresponding to logical drives A
through Pl. Note that the DISKS and DISKDEF macros generate in-line

(All Information Contained Herein is Proprietary to Digital Research.)

29

fixed data tables, and thus must be placed in a non-executable portion
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion
DISKDEF macros, with the
END statement. The ENDEF
necessary un initialized RAM

of your BIOS is defined following the
ENDEF macro call immediately preceding the

(End of Diskdef) macro generates the
areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the logical disk number, 0 to n-l
fsc is the first physical sector number (0 or 1)
Isc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
macro invocation. The "fsc" parameter accounts for differing sector
number ing systems, and is usually 0 or 1. The" Isc" is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and t~e BIOS-resident ram space is reduced. The "dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of "dir" is the total number of
directory entries which may exceed 255, if desired. The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir wh~n the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically 0, since the probability
of changing disks without a restart is quite low. The "ofs" value
determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research.)

30

space or.to simulate several logical drives on a single large capacity
physical drive. Finally, the [0] parameter is included when file
compatibility is required with versions of 1.4 which have been
modi f ied for higher dens i ty disks. 'rh i s par arne ter ensur es that only

,- 16K is allocated for each directory record, as was the case for
previous versions. Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i, j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS
DISKDEF
DISKDEF
DISKOEF
OISKDEF

ENDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.0. All disks have identical parameters, except that drives 0 and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n ~disk header blocks,~ starting at
address DPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE
DPE0:
OPEl:
DPE2:
OPE3 :

EQU
DW
DW
DW
DW

$
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
XLT0,0000H,0000H,e000H,DIRBUF,DPB0,CSVl,ALVl
XLT0,e0e0H,0000H,e000H,DIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive e
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT0,
which is the translation vector for drive e in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

followed by three l6-bit "scratch" addresses, followed by the
directory buffer address, disk parameter block address, check vector
address, "and allocation vector address. The check and allocation
vector addresses are generated by the ENDEF macro in the ram area
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.9. In
particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.9,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE0, DPEl, DPE2, or DPE3, in the
above example) in register HL. If SELDSK returns the value HL =
0000H, then the BDOS assumes the disk does not exist, and prints a
select error mesage at the terminal. program lines 22 through 36 give
a sample CP/M 2.0 SELDSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included in version 2.0 which
performs the actual logical to physical sector translation. In
earlier versions of CP/M, the sector translation process was a part of
the BDOS, and set to skip six sectors between eaCh read. Due
differing rotational speeds of various disks, the translation function
has become a part of the BIOS in version 2.0. Thus, the BOOS sends
sequential sector numbers to SECTRAN, starting at sector number 0.
The SECTRAN subroutine uses the sequential sector number to produce a
translated sector number which is returned to the BOOS. The BOOS
subsequently sends the translated sector number to SELSEC before the
actual read or write is performed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. In this case, the "skf" parameter
is omitted in the macro call, and SECTRAN simply returns the same
value which it receives. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKOEF macro call:

XLT0: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (B = 00 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELOSK, corresponding to the first element of a disk parameter
header (XLT0 in the case shown above). The SECTRAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate taole, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L. Note that if the number
of sectors exceeds 255, the translate table contains l6-bit elements
whose value must be returned in HL.

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research.)

32

/

(All Information Contained Herein is Proprietary to Digital Research.)

33

