SID™

Symbolic Instruction Debugger
User's Guide

Copyright © 1978 and 1981

Digital Research
P.O. Box 579
160 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360-5001

All Rights Reserved

COPYRIGHT

Copyright © 1978 and 1981 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader 1is granted permission to include the
example programs, either in whole or in part, in his
Oown programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the ccntents hereof and
specifically di<claims any implied warranties of
merchantability; or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and £~ ma%e changes
from time to time in the content hereof without
obligaticn of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M 1s a registered trademark of Digital Research.
ASM, DDT, MAC and SID are trademarks of Digital
Research. 1Intel is a registered trademark of Intel
Corporation.

The "SID User”s Guide" was prepared using the
Digital Research TEX Text Formatter and printed in
the United States of America by Commercial
Press/Monterey.

khkkkkkkhkhkkhkhkhkhkhkkhkhkkxkhkkkhdkkhrkhkhx%k

* Fourth Printing: January 1982 *
khkhkkhkkkhkhkhkhkhkhkhkkhkhkhkkhkhkhhkhhkhkhkkdkhhkkk

. T T A ¢

A —— ——g——— - -

Foreword

% the CP/M ® symbolic debugger, expands upon the features

‘7,1 standard debugger described in the "CP/M Dynamic

"0l (DDT) User”s Guide™ and provides greatly enhanced

"0z assembly level program checkout. Specifically, SID

2l -time breakpoints, fully monitored execution, symbolic

assembly, and memory display and fill functions.

D operates with "utilities" that can be dynamically
SID to provide traceback and histogram facilities.

Section 1 of this manual describes the command forms that

1iciate SID and the command lines that direct the actions of the

program. Section 2 describes SID"s ability to reference

nachine addresses through symbolic expressions. Section 3
cne commands that direct the debugging process. The SID
described in Section 4, provide additional debugging
“Section 5 contains several examples of SID debugging

iii

3.10

3.11

Table of Contents

Operation Under CP/M
Starting SID

SID Command Input

Symbolic Expressions

Literal Hexadecimal Numbers .
Literal Decimal Numbers . . .
Literal Character values . .
Symbolic References
Qualified Symbols
Symbolic Operators

Sample Symbolic Expressions .

Command s
The Assemble (A) Command . .

The Call (C) Command

The Display Memory (D) Command

The Fill Memory (F) Command

The Go (G) Command

The Hexadecimal Value (H) Command

The Input Line (I) Command .
The List Code (L) Command . .
The Move Memory (M) Command .

The Pass Counter (P) Command

The Read Code/Symbols (R) Command

The Set Memory (S) Command .

The Trace Mode (T) Command .

10

11

11

12

13

15
17
17
20
20
22
23
27
28
28
31
35

36

Table of Confents
(continued)

3.14 The Untrace Mode (U) Command . . . v « « « o« o« o« =

3.15 The Examine CPU State (X) Command e e e e e e e

SID Utilities
4.1 Utility Operation . . . ¢ ¢ ¢ o ¢ o o o o o « o
4.2 The HIST Utility . . . « v v v v v v o o o« o o « o &

4.3 The TRACE Utility . . . v +© v v v v v v v o o « .

SID Sample Debugging Sessions ¢ ¢ ¢ « « o o « o @

vi

Section 1
SID Operation Under CP/M

2.1 Starting SID

Type one of the following commands to start the SID program.

(a) SID

{b) SID x.y

(c) SID x.HEX
(d) SID x.UTL
(e) SID x.y u.v
(£) SID * u.v

In each case, SID loads into the Transient Program Area (TPA) and
relocates itself to the top of the TPA, overlaying the Console

Command Processor portion of CP/M. Figure 1-1 shows memory
organization before SID is loaded while Figure 1-2 shows the memory
configuration after SID 1is loaded and relocated. Due to the

relocation process, SID is independent of the exact memorv size that
CP/M manages in a particular computer configuration.

(High Memory)
BDOS
CCP
TPA
(Low Memory) JMP BDOS

Figure 1-1. Memory Configuration Before SID Loads

All Information Presented Here is Proprietary to Digital Research

1

SID User”s Guide ' 1.1 Starting SID

BDOS

SID

JMP BDOS

TPA

JMP SID

Figure 1-2. Memory Confiquration After SID Loads

After loading and relocating, SID alters the BDOS entry address
to reflect the reduced memory size, as shown in Figure 1-2, and
frees the lower portion of the TPA for use by the program under
test, Note that although SID occupies only 6K of upper memory when
operating, the self-relocation process necessitates a minimum 20K
CP/M system for initial setup, leaving about 10K for the test
program.

Command form (a) above loads and executes SID without loading a
test program into the TPA. Use this form to examine memory cr write

and test simple programs using the built-in assembly features of
SID.

Form (b) above is similar to (a) except that the file given by
Xx.y is automatically loaded for subsequent test. Note that although
X.y 1s loaded into the TPA, it is not executed until SID passes
program control to the program under test using one of the following
commands: C (Call), G (Go), T (Trace), or U (Untrace). It is your
responsibility to ensure that there is enough space in the TPA to
hold the test program as well as the debugger. If the program x.y
does not exist on the diskette or cannot be loaded, SID issues the

standard "?" error response. If no load error occurs, SID responds
as follows:

NEXT PC END
nnnn pppp eeee

where nnnn, pppp, and eeee are hexadecimal values that indicate the
next free address following the loaded program, the initial value of
the program counter, and the logical end of the TPA, respectively.
Thus, nnnn is normally the beginning of the data area of the program
under test; PPPP is the starting program counter (set to the
beginning of the TPA), and eeee is the last memory location
available to the test program, as shown in Figure 1-3. Although x.y
usually contains machine code, the operator can name an ASCII file,
in which case these program addresses are less meaningful.

41l Information Presented Here is Proprietary to Digital Research

2

SID User”s Guide 1.1 Starting SID

BDOS

SID
JMP BDOS

eeee: (Free Space)

nnnn:

(Test
pPppp: program)

JMP SID

Fiqure 1-3. Memory Configuration After Test Program Load

Command form (c) is similar to form (b) except that the test
program is assuned to be in Intel "hex" format, as directly produced
by ASM or Mal. In this case, the initial value of the procram
counter is obtained from the terminating record of the hex file
unless this value is zeroc, in which case the prog=ram counter is set
to the beginning of the TPA. As Lhe »"M and MAC manuals discuss,
the program counter value can be given on the "END" statement in the
source program. Again, it is your responsibility to ensure that the
hex records do not overlay portions of the SID debugger or CP/M
Operating System. If the hex file does not exist or if errors occur
in the hex format, SID issues the "?" response. Otherwise, the
principle program locations shown in the previous paragraph are
listed at the console.

Use command form (d) when a SID utility function is to be
included. 1In this case, SID is first loaded and relocated as above.
The utility function is then loaded into the TPA. Utility functions
are also self-relocating and immediately move to the top of the TPA,
placing themselves directly below the SID program. The BDOS entry
address is changed to reflect the reduced TPA, as shown in Figure 1-
4. Generally, the utility program prints sign-on information and
may or may not prompt for input from the console. Exact details of
utility operation are given in Section 4, "SID Utilities."

All Information Presented Here is Proprietary to Digital Research

3

SID User”s Guide 1.1 Starting SID

BDOS

SID

UTL
JMP BDOS

TPA

JMP UTL

Figure 1-4. Memory Configuration Following Utility Load

Command form (e) is similar to (c), except that the symbol
table given by u.v is loaded with the program x.y. Symbol
information is loaded from the current top of the TPA downward
toward the program under test, as shown in Figure 1-5,.

BDOS

SID

(UTL If
Present)

SYMBOLS

JMP BDOS

Free Space

Test Program

JMP SYMBOLS

Figure 1-5., Memory Configuration Following Symbol Load

The symbol table is in the format produced by the CP/M Macro
Assembler. 1In particular, the symbol table must be a sequence of
address and symbol name pairs, where the address consists of four

hexadecimal digits, separated by a space from the symbol that takes
on this address value. The symbol consists of up to 15 graphic

ASCII characters terminated by one or more tabs (1I) or a carriage-

All Information Presented Here is Proprietary to Digital Research

4

i

SID User”s Guide 1.1 Starting SID

return line-feed sequence. Note that you can create or alter a

symbol table using the CP/M editor, as long as this format is
followed.

The response following program load is as shown in command form
(b) above, giving essential program locations. When SID begins
symbol load, it displays the following message:

SYMBOLS

This message indicates that any subsequent error is due to the
symbol load process. In particular, the "?" error following the

SYMBOLS response is due to a non-existent or incorrectly formatted
symbol file.

Command form (f) is similar to (e), except that no program is
loaded with the symbol file u.v.

Examples of typical commands that start the SID program are
shown below.

(a) SID

(b) SID DUMP.COM

(b) SID DUMP.ASM

(c) SID SAMPLE.HEX

{c) SID DUMP.HEX

(d) SID TRACE.UTL

(1) SID HIST.UTL

(¢} SID DUMP.COM DUMP.SYM
(e) SID DUMP.HEX DUMP.SYM
(e} SID TEST.COM TEST.ZOT
(£) SI * DUMP.SYM

1.2 SID Command Input

Command input to SID consists of a series of "command lines"
that direct the actions of the SID program. These commands allow
display of memory and CPU registers, and direct the execution and
breakpoint operations during test program debugging.

When SID is ready to accept the next command, it displays a "#"
at the console. Each command is based upon a single letter,
followed by optional parameters, and terminated by a carriage
return. Note that all standard line editing features of CP/M are
available, with a maximum of 64 command characters. The following
table lists the CP/M line editing functions.

All Information Presented Here is Proprietary to Digital Research

5

SID User's Guide 1.2 SID Command Input

Table 1-i1. CP/M Line Editing Controls

Control Function
Character
TC CP/M system reboot, return to CCP
TE Physical end-of-1line
TH Delete last character and backspace
cursor
TP Print console output (on/off toggle)
TR Retype current input line
1s Stop/start console output
Tu Delete current input line
TX (Same as TU)
rubout Delete and echo last character

The T character indicates that you must simultaneously hold down the
control key while depressing the particular function key. Note that
the TR, TU, and TX keys cause CP/M to type a "#" at the end of the
line to indicate that the line is being discarded.

Various SID commands produce long typeouts at the consocle (see
the "D" comméend which displays memory, for example). In this case,

you can abort the typeout before it completes by typing any key at
the console (a "return" suffices).

The single letter commands that direct the actions of SID are

typed at the beginning of the command line. You can enter commands
in upper- or lower-case. Table 1-2 summarizes the valid commands.

All Information Presented Here is Proprietary to Digital Research

6

= wam—a

ol s s~ S

SID User”s Guide 1.2 SID Command Input

Table 1-2, Command Letters

Letter Meaning
A Assemble directly to memory
C Call to memory location from SID
D Display memory in hex and ASCII
F Fill memory with constant value
G Go to test program for execution
H Hexadecimal arithmetic
I Input CCP command line
L List 8080 mnemonic instructions
M Move memory block
P Pass point set, reset, and display
R Read test program and symbol table
S Set memory to data values
T Trace test program execution
u Untrace (monitor) test program
X Examine state of CPU registers

Although the details of each of the commands are given in later
sections, nearly all of the commands accept parameters following the
letter that governs the command actions. The parameters can be
counters or memory addresses, and can appear tn both literal and

symbolic form, but eventually reduce to values in the range 0-65535
(four hexadecimal digits).

As an example, the "display memory" command can take the
following form:

Dssss, eeee

where D is the command letter, and ssss and eeee are "command
parameters" that give the starting and ending addresses for the
display, respectively. In their simplest form, ssss and eeee can be
literal hexadecimal values, as shown below.

D100 ,300

These values instruct SID to print the hexadecimal and ASCII values
contained in memory locations 0100H through 0300H.

Although you can usually refer to program listings to obtain
absolute machine addresses, SID supports more comprehensive
mechanisms for quick access to machine addresses through program
symbols. In particular, the command parameters can consist of

"symbolic expressions" which are described fully in the following
section.

All Information Presented Here is Proprietary to Digital Research

7

Section 2
SID Symbolic Expressions

An 1important facility of SID 1is the ability to reference
absolute machine addresses through symbolic expressions. Symbolic
expressions can involve names obtained from the program under test
that are included in the "SYM" file produced by the CP/M Macro
Assembler. Symbolic expressions can also consist of literal values
in hexadecimal, decimal, or ASCII character string form. These
values can then be combined with various operators to provide access
to subscripted and indirectly addressed data or program areas. This
section describes symbolic expressions so that you can incorporate

them as command parameters in the individual command forms that
follow this section.

2.1 Literal Hexadecimal Numbers

SID normally accepts and displays values in hexadecimal. The
valid hexadecimal digits consist of the decimal digits 0 through 9
along with the hexadecimal digits A, B, C, D, E, and F,
corresponding to the decima’ values 10 through 15, respectively.

A literal hexadecimal number in SID consists of one or more
contiguous hexadecimal digits. If you type four digits, thern the
leftmost digit is most significant, while the rightaost digit is
least significant. If the numb~r contains more than four digits,
the rightmost four are taken as significant, and the remaining
leftmost digits are discarded. The examples below stow the

corresponding hexadecimal and decimal values for the given input
values.

INPUT VALUE HEXADECIMAL DECIMAL
1 0001 1
100 01060 256
fffe FFFE 65534
10000 0000 0
38001 8001 32769

2.2 Literal Decimal Numbers

Although SID"s normal number base is hexadecimal, you can
override this base on input by preceding the number with a "#"
symbol, which indicates that the following number is in the decimal
base. 1In this case, the number that follows must consist of one or
more decimal digits (0 through 9) with the most significant digit on
the left and the least significant digit on the right. Decimal
values are padded or truncated according to the rules of hexadecimal
numbers, as described above, by converting the decimal number to the
equivalent hexadecimal value.

All Information Presented Here is Proprietary to Digital Research

9

SID User”s Guide 2.2 Literal Decimal Numbers

The input values shown to the left below produce the internal
hexadecimal values shown to the right below:

INPUT VALUE HEXADECIMAL VALUE
#9 0009
#10 000A
#256 0100
#65535 FFFF
#65545 0009

2.3 Literal Character Values

As an operator convenience, SID also accepts one or more
graphic ASCII characters enclosed in string zpostrophes (7) as
literal values in expressions. Characters remain as typed within
the paired apostrophes (i.e., no case translation occurs) with the
leftmost character treated as the most significant, and the
rightmost character treated as least significant. Similar to
hexadecimal numbers, character strings of length one are padded on
the left with zero, while strings of length greater than two are
trunca“ed to the rightmost two characters, discarding the leftmost
remair.ing characters.

Note that the enclosing apostrophes are not included in the
character string, nor are ti.:y I.cluded in the character count, with
one exception. To include the possibility of writing strings that
include apostrophes, a pair of contiguous apostrophes is reduced to

a single apostrophe and included in the string as a normal graphic
character.

The strings shown to the left below produce the hexadecimal
values shown to the right below. {For these examples, note that
upper—case ASCII alphabetics begin at the enccded hexadecimal value
41, lower-case alphabetics begin at 61, a space is hexadecimal 20,
and an apostrophe is encoded as hexadecimal 27).

INPUT STRING HEXADECIMAL VALUE

‘A7 0041

“AB” 4142
“ABC” 4243
“an” 6141

e 0027
frrsss 2727
oy 2041

- 4120

All Information Presented Here is Proprietary to Digital Research

10

i LT R A

SID User’s Guide 2.4 Symbolic References

2.4 Symbolic References

Given that a symbol table is present during a SID debugging
session, you can reference values associated with symbols through
the following three forms of a symbol reference:

(a) .S
(b) @s
(c) =S

where s represents a sequence of one to fifteen characters that
match a symbol in the table.

Form (a) produces the address value (i.e., the value associated
with the symbol in the table) corresponding to the symbol s. Form
(b) produces the 16-bit "word" value contained in the two memory
locations given by .s, while form (c) results in the 8-bit "byte"
value at .s in memory. Suppose, for example, that the input symbol
table contains two symbols, and appears as follows:

0100 GAMMA 0102 DELTA

Further, suppose that memory starting at’' 0100 c~ntains the following
byte data values:

0100: 02
0101: 3E
0102: 4D
5383. 22

Based upon this symbol table and these memory wvalues, the
symbol references shown to the left below produce the hexadecimal
values shown to the right below. Recall that 16-bit 8080 memory
values are stored with the least significant byte first, and thus
the word values at 0100 and 0102 are 3E02 and 224D, respectively.

SYMBOL REFERENCE HEXADECIMAL VALUE
. GAMMA 0100
.DELTA 0102
@GAMMA 3E02
@DELTA 224D
=GAMMA 0002
=DELTA 004D

2.5 Qualified Symbols

Note that duplicate symbols can occur in the symbol table due
to separately assembled or compiled modules that independently use

the same name for differing subroutines or data areas. Further,
block structured languages, such as PL/M, allow nested name
definitions that are identical, but non-conflicting. Thus, SID

allows reference to "qualified symbols" that take the form:

All Information Presented Here is Proprietary to Digital Research

11

SID User”s Guide 2.5 Qualified Symbols

sl/s2/ . . . /Sn

where S1 through Sn represent symbols that are present in the table
during a particular session.

SID always searches the symbol table from the first to last
symbol, in the order the symbols appear in the symbol file. For a
qualified symbol, SID begins by matching the first S1 symbol, then
scans for a match with symbol S2, continuing until symbol Sn is
matched. If this search and match procedure is not successful, SID
prints the "?" response to the console. Suppose, for example, that
the symbol table appears as follows:

0100 A 0300 B 0200 A 3E00 C 20F0 A 0102 A

in the symbol file, with memory initialized as shown in the previous
section. The ungualified and qualified symbol references shown to

the left below produce the hexadecimal values shown to the right
below.

SYMBOL REFERENCE HEXADECIMAL VALUE
A 0100
QA . 3E02
.A/A 0200
.C/A/A 0102
=C/Ba/A 004D
@B/A/A 20F0

2.6 Symbolic Operators

Literal numbers, strings, and symbol references can be combined
into symbolic expressions using unary and binary "+" and "-"
operators. The entire sequence of numbers, symbols, and operators
must be written without embedded blanks. Further, the sequence is
evaluated from left to right, producing a four digit hexadecimal
value at each step in the evaluation. Overflow and underflow are
both ignored as the evaluation proceeds. The final value becomes
the command parameter, whose interpretation depends upon the
particular command letter that precedes it.

When placed between two operands, the "+" indicates addition of
the second operand to the previously accumulated value. The sum
becomes the new accumulated value to this point in the evaluation.
If the expression begins with a unary "+", then the immediately
preceding (completed) symbolic expression is taken as the initial

accumulated value (zero is assumed at SID startup). For example,
the command:

DFEQOO+#128,+5

contains the first expression "FE00+#128" which adds FEOO0 and

All Information Presented Here is Proprietary to Digital Research

12

SID User”s Guide 2.6 Symbolic Operators

(decimal) 128 to produce FE80 as the starting value for this display
command. The second expression "+5" begins with a unary "+" which
indicates that the previous expression value (FE80) is to be used as
the base for this symbolic expression, producing the value FE85 for

the end of the display operation. Thus, the command given above is
equivalent to:

DFE80 ,FE85

The "-" symbol causes SID to subtract the literal number or
symbol reference from the 16-bit value accumulated thus far in the
symbolic expression. TIf the expression b~gins with a minus sign,
then the initial accumulated value is taken as zero. That is,

-X is computed as 0-x

where x 1is any valid symbolid expression. For example, the
following command:

DFF00-200 ,-%#512

is equivalent to the simple command:

DFDOO ,FEQOQO

A special up-arrow operator, denoted by """, denotes the top-
of-stack in the program under test. 1In general, a sequence of n up-
arrow operators extracts the nth stacked item in the test program,
but does not change the test program stack content or stack pointer.
This particular operator is used most often in conjunction with the
G (Go) command to set a breakpoint at a return from a subroutine
during test, and is described fully under the G command.

2.7 Sample Symbolic Expressions

The formulation of SID symbolic expressions is most often
closely related to the program structures in the program under test.

Suppose you want to debug a sorting program that contains the data
items listed below:

LIST: names the base of a table of byte wvalues to
sort, assuming there are no more than 255
elements, denoted by LIST(0), LIST(l), .
LIST (254).

o 7

N: is a byte variable which gives the actual
number of items in LIST, where the value of N
is less than 256. The items to sort are stored
in LIST(0) through LIST (N-1).

All Information Presented Here is Proprietary to Digital Research

13

SID User's Guide 2.7 ©Sample Symbolic Expressions

I: is the byte subscript which indicates fhe next
item to compare in the sorting process. That
is, LIST(I) 1is the next item to place in
sequence, where I is in the range 0 through N-
1.
Given these data areas, the command
D.LIST,+#254
displays the entire area reserved for sorting:
LIsr(o), LIST(l), . . . , LIST(254)
The command
D.LIST,+=1
displays the LIST vector up to and including the next item to sort:
LIST(0), LIST(l), . . . , LIST(I)
The command
D.LIST+=I,+0
displays only LIST(i). Finally, the command
D.LIST,+=N-1
displays only the area of LIST that holds active items to sort:
LisT(0), LIST(1), . + « , LIST(N-1)
The exact manner in which SID uses symbolic expressicons

depends upon the individual command that you issue. The following
sectlion details these commands. :

All Information Presented Here is Proprietary to Digital Research

14

Section 3
SID Commands

Enter SID commands at the console following the "#" prompt.
The commands direct the debugging process by allowing alteration and

display of CPU registers and memory as well as the controlling
execution of the program under test.

The following sections describe the commands that SID accepts.

3.1 The Assemble (A) Command

The A command allows you to insert 8080 machire code and
operands into the current memory image using standard Intel

mnemonics, along with symbolic references to operands. The A
command take€s the forms:

(a) As
(by A
(c) -A

where s represents any valid symbolic expression. Form (a) begins
inline assembly at the address given by s, where ~ach successive
address is displayed ‘until you typc 2 rll line (i.e., a single
carriage return). Form (b) is equivalent to (a), except the
starting .address for the assembly is taken from the last assembled,
listed, or traced address (see the "L", "T", and "U" commands). The
following command sequence, for example, assemblas a short program
into the Transient Program Area (note that you must terminate each
command line with a carriage return):

Al100 begin assembly at 0100
0100 MVI A,1l0 load A with hex 10
0102 DCR A decrement A register
0103 JNZ 102 loop until zero

0106 RST 7 return to debugger
0107 ' single carriage return

As each successive address is prompted, you can either enter a
mnemonic instruction or return to SID command mode by entering a
single carriage return (a single "." is also accepted to terminate
inline assembly to be consistent with the "S" command).

Delimiter characters that are acceptable between mnemonic and
operand fields include space or tab sequences.

Invalid mnemonics or ill-formed operand fields produce "?2"
errors., In this case, control returns back to command mode, where
you can proceed with another command line, or simply return to

assembly mode by typing a single "A", since the assumed starting

All Information Presented Here is Proprietary to Digital Research

15

SID User”s Guide 3.1 The Assemble (A) Command

address is automatically taken from the last assembled address.

The assembler/disassembler portion of SID is a separate module,
and can be removed to increase the available debugging space. Thus,
form (c) is entered to remove the module, returning approximately 1
1/2 K bytes. Since the entire SID debugger requires approximately 6
K bytes, this reduces SID requirements to abbut 4 1/2 K bytes. When
the assembler/disassembler module is removed in this manner, the A
and L commands are effectively removed. Further, the trace and
untrace functions display only the hexadecimal codes, and the
traceback utility displays only hexadecimal addresses. Any existing
symbol information is also discarded at this point, although such
information can be reloaded (see the "I" and "R" commands).

Examples of valid assemble commands are shown below:

al00

A#100

A .CRLF+5
AQGAMMA+@X-=I
A+30

Given that the command A100 has been entered, the following
interaction could take place between SID and the operator:

SID PROMPT OPERATOR INPUT
0100 MVI C, .A-.B
o1°" LXI H,.SOURCE
0105 LXI D,+100
0108 MOV A,M
0109 INX H
010A STAX D
010B INX D
010cC DCR C
010D JNZ 108
0110 ("return" only)

A, B, and SOURCE are symbols that appear in the symbol table. 1In
this case, SID computes the address difference between A and B as
the operand for the MVI instruction. The LXI H operand becomes the
address of SOURCE, while the LXI D instruction receives the operand
value .SOURCE+100 because .SOURCE was the immediately preceeding
symbolic expression value. This particular program segment moves a

block of memory determined by the address values of the
corresponding symbols.

All Information Presented Here is Proprietary to Digital Research

16

R

il

B —

e

s A . 3 s P el

e

SID User”s Guide 3.2 The Call (C) Command

3.2 The Call ({C) Command

The C command performs a call to an absolute location in
memory, without disturbing the register state of the program under
test. The C Command takes the forms:

(a) Cs
(b) Cs,b
(c) Cs,b,d

Although the C command is designed for use with SID utilities, it
can call on test program subroutines to perform program
initialization, or to make CP/M BDOS calls that initialize various
system parameters before executing the test program.

Form (a) above performs a call on absolute location s, where s
is a symbolic expression. In this case, registers BC = 0000 and DE
= 0000 in the call. Normal exit from the subroutine is through
execution of a RET instruction that returns control to SID, foilowed

by the normal SID prompt.

Form (b) above 1is equivalent to (a), except that the BC

register pair is set to the value of expression b, while DE is set
to 0000.

Form (c) is similar to (b); the BC register pair is set to the
value b while the DE pair is set to the value of 4. Several
examples of valid C commands are shown below. Refer also to the SID
v ility discussion for examples of the C command in utility
initialization, data collection, and display functions.

C100

C#4096
C.DISPLAY
CRIMPVEC+=X
C.CRLF,#34
C.CRLF,@X,+=X

3.3 The Display Memory (D) Command

The D command displays selected segments of memory in both byte
(B-bit) and word (16-bit) formats. The display appears in both

hexadecimal and ASCII form in the output. The D command takes the
following forms:

(a) Ds
(b) Ds, £
(c) D

(d) D, f
(e) DWs
(£) DWs, £
(g) DW
(h) DW, £

All Information Presented Here is Proprietary to Digital Research

17

SID User”s Guide 3.3 The Display Memory (D) Command

Forms (a) through (d) display memory in byte format, while
forms (e) through (h) display memory in word format. The byte
format display appears as:

aaaa bb bb bb . . . bbcc . . . cc

where aaaa is the base address of the display line and the sequence
of (up to) 16 bb pairs represents the hexadecimal values of the data
stored starting at address aaaa. The sequence of c”s represent the
same data area displayed in ASCII format, where possible. A period

(.) is displayed as a place holder when the data item does not
correspond to a graphic character.

Byte mode displays are "normalized" to address boundaries that
are multiples of 16. That is, if the starting address aaaa is not a
multiple of 16, then the display 1line 1is printed to the next
boundary address that is a multiple of 16. Each display line that
follows contains 16 data elements until the last display line is
encountered.

Command forms (e) through (h) display in word mode which is
similar to the byte mode display described above, except that the
data elements are printed in a double byte format:

aaaa WWWW WWWW . WWWW cC . . . CC
where aaaa 1is the starting address for the display line and the
sequence of (up to 8) wwww s represent the data items that are
stored in memory beginning at aaaa. Similar to the byte mode
display, the sequence of c¢”s represent the decoded ASCII characters
starting at address aaaa. As in the byte mode display, a periocd is

displayed as a place holder when the character in that position is
non-graphic.

Contrary to the byte mode display, address normalization to
modulo 16 address boundaries does not occur in the word mode
display. Recall that 8080 double words are stored with the least
significant byte first, and thus the word mode display reverses each
byte pair so that the individual data items are displayed as four

digit hexadecimal numbers with the most significant digits in the
high-order positions.

Command form (a) displays memory in byte format starting at
location s for 1/2 of a standard CRT screen (12 lines). This form
of the command is useful when you want to view a segment of memory

beginning at a particular position with an indefinite ending
address.

Command form (b) is similar to (a), but specifies a particular
ending address. In this case, the start address is taken as s with
the display continuing through address f. Recall that you can abort

excessively long typeouts by depressing any keyboard character, such
as a carriage return.

All Information Presented Here is Proprietary to Digital Research

18

T s i i S . 4

B . b S A

SID User”s Guide 3.3 The Display Memory (D) Command

Form (c) is similar to (a) and (b), except the starting address
for the display is taken from the last displayed address, or from
the value of the memory address registers (HL) in the case that no
previous display has occurred since the last breakpoint. It is
often convenient, for example, to use form (a) to display a segment
of memory, followed by a sequence of D commands of form (c) to

continue the display. Each D command displays another 1/2 screen of
memory.

Cocmmand form (d) is similar to (b) except the starting address
is taken automatically as described in form (c) above.

Assume, for example, that decimal values 1 through 255 are
stored in memory starting at hexadecimal address 0100. The command:

D100 ,12A
produces the expanded form of the display shown below:

0100 01 02 03 04 (etc.) OE QOF 10 .. (etc.) ..
0110 11 12 13 14 (etc.) 1E 1F 20 .. (etc.)
0120 21 22 23 24 (etc.) 29 2A 2B 1"#$%&7 ()*+

Command forms (e) through (h) parallel the byte display formats
given by (a) through (d), except that the display is given in word
format. Fcrm (e) displays in word format from location s for 1/2
screen,; while form (f) displays from location s through location f.
Form (g) displays from the last display location, or from HL if
there Ics been an immediately preceding breakpoint with no
intervening display. Form (h) is similar to (g), but displays
through location f. The command:

DW100 ,.28

for example, produces the expanded form of the following output
lines:

0100 0201 0403 (etc.) OEOD 100F .. (etc.) ..
0110 1211 1413 (etc.) 1EID 201F .. (etc.)
0120 2221 2423 (etc.) 2928 2B2A !"#$3&”7()*+

The following are examples of valid D commands:

DF3F

D#100 ,# 200

D .GAMMA , .DELTA+# 30
D .GAMMA
DWQ@ALPHA,+#100

All Information Presented Here is Proprietary to Digital Research

19

SID User”s Guide 3.4 The Fill Memory (F) Command

3.4 The Fill Memory (F) Command

The F command fills memory with a constant byte value, and
takes the form:

Fs,f£,d

where s is the starting address for the fill; £ is the ending
(inclusive) address for the fill, and d is the 8-bit data item to
store in locations s through f. It is your responsibility to not
fill memory locations that are occupied by the resident portions of
CP/M, including areas reserved for SID. The following are examples
of valid F commands:

F100 ,3FF,FF
F .GAMMA ,+#100 ,% 23
F@ALPHA,+=1,=X

3.5 The Go (G) Command

The G command passes program control to a program under test.
Execution proceeds in real time from the address specified by the G
command. That is, the G command releases processor control from &ID
Lo the program under test. Execution does not return to SID unti. a
break or pass point is reached (see the "P" command for a discussion
of pass points). The operator can force a return to SID, however,
by interrupting the processor with a "restart 7" (RST 7) provided by

the program under test, or forced by external hardware such as front
Panel control switches, if available.

The G command takes the following forms:

G

Gp

G,a
Gp, a
G,a,b
Gp,a,b
-G

_Gp
-G,a
-Gp, a
-G,a,b
"Grpr arb

HXxWHS3Q MO L0 T

Forms (a) through (f) 'start test program execution with
;ymbolic features enabled, while forms (g) through (1) are identical
1n function, but disable the symbolic features of SID. In
particular, form (a) starts test program execution from the program
counter (PC) given in the machine state of the program under test
(see the "X" command for machine state display). 1In this case, no
breakpoints are set in the test program. Form (b) is similar to

All Information Presented Here is Proprietary to Digital Research

20

SID User’s Guide 3.5 The Go (G) Command

(a) , but initializes the test program”s PC to p before starting
execution. Again, no breakpoints are set in the test program.
Similar to (a), form (c) starts execution from the current value of
PC but sets a breakpoint at location a. The test program receives
control and runs in real time until the address a is encountered.
Note that control returns to SID upon encountering a pass point or
RST 7, as described above.

Upon encountering the breakpoint address a, the break address
is printed at the console in the form:

*3 .S

where s is the first symbol in the table that matches address a, if
1t exists. Note that the temporary breakpoint at address a 1is
automatically cleared when SID returns to command mode (see the "P"
command for permanent breakpoints).

Form (d) combines the functions of (b) and (c): the test
program PC is set to the address p and a temporary breakpoint is set
at location a. As above, the breakpoint is cleared when control
returns to SID. It should be noted that an immediate breakpoint
always occurs if p = a. If this is not desired, however, you can
use the trace function to single step past the current address,
followed by a G command (see the "T" command for actions o' the
trace facility).

Form (e) extends the breakpoint facility by allowing two
temporary break addresses at a and b. Program execution begins at
the current PC and continues until either address a or b 1is
encountered. Both temporary break addresses are cleared when SID
returns to command mode. Form (f) is similar to (e), except the
initial value of PC is set to location p before starting the test
program.

Note that the instruction at a breakpoint address is not
executed when you use the G command. Suppose, for example, that a
subroutine named TYPEOUT is located at address 0302 in a test
program, consisting of the machine code:

TYPEOUT:
0302 MOV E,A
0303 . MVI C,2
0305 JMP 0005

Suppose further that you are testing a program that makes calls on

the TYPEOUT subroutine where a break address is to be set. Enter
the command:

G, .TYPEOUT

Test program execution proceeds from the current PC value and stops
when the TYPEOUT subroutine is reached, with the breakpoint message:

*0302 .TYPEOUT

All Information Presented Here is Proprietary to Digital Research

21

SID User”s Guide 3.5 The Go (G) Command

indicating that control has returned from the test program to SID.
At this point, the program counter of the test program is at
location 0302 (i.e., .TYPEOUT), and the instruction at this location
has not yet been executed. You can execute through the TYPEOUT
subroutine using any of the commands G, T, or U. The following is a
useful command in this situation:

G,”

This command continues execution from 0302, and sets a breakpoint at
the topmost stacked element (given by """). Since the topmost
stacked element must be the subroutine return address, this
particular G command executes the TYPEOUT subroutine, with a break

upon return to the instruction following the original call to
TYPEOUT.

Command forms (g) through (1) correspond directly to functions
(a) through (f), except that pass points are not displayed until the
corresponding pass counters reach 1 (see the "P" command for details
of intermediate pass point display).

Note that the essential difference between the G command and
the U (Untrace) command is that execution proceeds unmonitored in
real time with the G commanc, while each instruction is executed in
single-step mode with the U command. Fully monitored execution
under the U command has the advantage that you can regain control at
any point in the test program execution. However, execution time of
the test program is seriously degraded in TIntrace mode since
automatic breakpoints are set and cleared fcllowing each
instruction.

The following are examples of valid G commands:

G100

G100,103

G.CRLF, .PRINT, #1024
G@IMPVEC+=I , .ENDC, .ERRC
G, .ERRSUB

G, .ERRSUB,+30

-G100,+10 ,+10

3.6 The Hexadecimal Value (H) Command

The H command performs hexadecimal computations including

number base conversion operations. The H command takes the
following forms:

(a) Ha, b
(b) Ha
(c) H

Form (a) computes the hexadecimal sum and difference using the two
operands, resulting in the display:

All Information Presented Here is Proprietary to Digital Research

22

SID User”s Guide 3.6 The Hexadecimal Value (H) Command

ssss dddd

where ssss is the sum a+b, and dddd is the difference a-b, ignoring
overflow and underflow conditions,

Form (b) performs number and character conversion, where a is a
symbolic expression. The display format in this case is:

hhhh #ddddd “c” .s

where hhhh is the four digit hexadecimal value of a; #ddddd is the
(up to) five digit decimal value of a; ¢ is the ASCII value of a
when a is graphic, and s is the first symbol in the table which
matches the value a, when such a symbol exists. Assume, for
example, that the symbol GAMMA is located at address 0100, as in
previous examples. The H commands shown to the left below result in
the displays shown to the right below:

COMMAND RESULTING DISPLAY
HO,1 0001 FFFF
H41 0041 #65 “A”
H100 0100 #256 .GAMMA
H .GAMMA 0100 #256 .GAMMA
H=GAMMA 0001 #1
HQGAMMA 0201 #&513
HFF +=GAMMA 0100 #256 .GAMMA
H A~ 0041 #65 “A”
H A" +=GAMMA 0042 #66 “B”

Command form {(c) prints the complete list of symbols along with
their corresponding address values. The list is printed from the
first to last symbol loaded, and can be aborted during typeout by
depressing any keyboard character.

3.7 The Input Line (I) Command

When testing programs that run in the CP/M environment, it is
often useful to simulate the command line that the CCP normally
prepares upon program load. The I command takes the form:

Iccecece ... ccc

where the sequence of c¢“s represent ASCII characters that normally
follow the test program name in the CCP command line. For example,
the CP/M "DUMP" program is normally started in CCP command mode by
typing:

DUMP X.COM

which causes the CCP to search for and load the DUMP.COM file, and

All Information Presented Here is Proprietary to Digital Research

23

SID User”s Guide 3.7 The Input Line (I) Command

pass the filename "X.COM" as a parameter to the DUMP program. 1In
particular, the CCP initializes two default file control blocks,
along with a default command line that contains the characters
following the DUMP command.

To trace and debug a program such as DUMP, invoke the SID
program with the following command:

SID DUMP.COM

which loads the command file containing the DUMP machine code. If
the symbol table is available, the SID invocation is:

SID DUMP.COM DUMP.SYM

In either case, SID loads the DUMP program and prompts the console

for a command. To simulate the CCP"s command line preparation, type
the command:

IX.COM

where the "I" denotes the Input command, which is followed by the

simulated command line. The operator can then commence the debug
run with default areas properly setup.

The I command specifically initializes the default file control
block in low memory, labelled DFCB1l, that is normally located at
005C. The file control block which is initialized by the I command
is complete in the sense that the program can simply address DFCB1
and perform and open, make, or delete operation without further
initialization. As a convenience, a second filename is initialized
at location DFCBZ, which is at address DFCB1+0010 (hexadecimal).

It is your responsibility to move the second drive number,
filename, and filetype to another region of memory before performing
file operations at DFCB1 since the l6-byte region at DFCB2 is
immediately overwritten by any file operation. Further, the default
buffer, labelled DBUFF, is initialized to contain the entire command
line with the first byte of the buffer containing the command line
length. In a standard CP/M system, the DBUFF area is assumed to
start at 0080 and end at 00FF. Note, however, that the I command
restricts the simulated CCP command line to 63 characters since
SID”s line buffer is used in the simulation,

Given an I command of the form:
I dl:£f1.t1 d2:f2.tl

where dl: and d2: are (optional) drive identifiers; fl1 and f2 are
(up to eight character) filenames, and tl and t2 are (up to three
character optional) filetypes, two default file control block names
are prepared in the form:

All Information Presented Here is Proprietary to Digital Research

24

SID User”s Guide 3.7 The Input Lire (I) Command

DFCB1l: 417 £f1° t1” 00 00 00 00
DFCB2: 42° £2° t2° 00 00 00 00 B
00 (current record field) :

If dl: is empty in the original command line, then dl1” = 00 (which
automatically selects the default drive), otherwise if d1 = A, B, C,
or D, then 41° = 01, 02, 03, or 04, respectively, which properly
initializes the file control block for automatic disk selection.
Field f1” is initialized to the ASCII filename given by fl, padded
to an eight character field with ASCII blanks. Similarly, tl1~ is
initialized to the ASCII filetype, padded with blanks in a field of
length three.

Lower-case alphabetics in fl and tl are translated to upper?
case 1in f1° and tl1”, respectively. Names that exceed their
respective length fields are truncated on the right. Finally, the

extent field is zeroced in preparation for a BDOS call to open or
make the file.

The second default file control block given by 42, f£f2, and t2
is prepared in a similar fashion and stored starting at location
006C. Note that the current record field at location 007C is also
initialized to 00. If any of the fields f1, tl1, f2, and t2 are not
included in the command line, their corresponding fields in the
default file control blocks are filled with blanks.

Ambiguous references that use the "*" or "?" characters are
processed 1in the same manner as in the CC.: the "*" symbol in-a
name or type field causes tne fticld to be right-filled with "?2"
characters. The input lines shown below illustrate the default area
initialization which takes place for various unambiguous::and
ambiguous filenames, The areas shown to the right give’ the
hexadecimal values which begin at the labelled addresses, where
ASCII values A, B, C, and D have the hexadecimal values 41, 42, 43,
and 44, respectively. Further, the special characters ":", ".";
"*" and "?" have the ASCII encoded values 3A, 2E, 2A, and 3F, while
an ASCII space has the hexadecimal value 20: f

COMMAND LINE DEFAULT DATA AREA INITIALIZATION

I DFCB1: 00
20 20 20 20 20 20 20 20
20 20 20 00 00 00 00
DFCB2: 00
20 20 20 20 20 20 20 20
20 20 20 00 00 00 00
00
00

DBUFF: 00 00

All Information Presented Here is Proprietary to Digital Reseateh

25

SID User”s Guide 3.7 The Input Line (I) Command

I A.B DFCB1: 00
41 20 20 20 20 20 20 20
42 20 20 00 00 00 0O
DFCB2: 00
20 20 20 20 20 20 20 20
20 20 20 00 00 00 0O
00
00

DBUFF: 04 20 41 2E 42 00

IA:B.C b:d.e DFCB1: 01
42 20 20 20 20 20 20 20

_ 43 20 20 00 00 00 OO
DFCB2: 02

44 20 20 20 20 20 20 20
45 20 20 00 00 00 0O

00 '

00

DBUFF: 0B 41 3A 42 2E 43 20
42 3A 44 2E 45 00

I AA*.B?C D: DFCB1l: 00
41 41 3F 3F 3F 3F 3F 3F

42 3F 43 00 00 00 00
DFCB2: 04

20 20 20 20 20 20 20 20

20 20 20 00 00 00 0O
00
00

DBUFF: OB 20 41 41 2A 2E 42
3F 43 20 44 3aA 00

Note that the I command is also used in conjunction with the R
command to read program files and symbol tables after SID
has initially loaded. Details of the use of I in
this situation are given with the R command that follows.

Additional valid I commands are given below:

I x.dat

Ix.inp y.out
Ia:x.inp b:y.out $-p
ITEST .COM

I TEST.HEX TEST.SYM

All Information Presented Here is Proprietary .to Digital Research

26

SID User”s Guide 3.8 The List Cocde (L) Command

3.8 The List Code (L) Command

The L command disassembles machine code in the memory of.the
machine, with symbolic labels and operands placed in the appropriate
fields, where possible. The L command takes the forms:

(a) Ls

(b) Ls,f
(c) L

(4) -Ls
(e) -Ls, £
(f) -L

Form (a) lists disassembled machine code starting at symbolic
location s for 1/2 CRT screen (12 lines). Form (b) specifies an
exact range for disassembly: s specifies the starting location, and
f gives the final disassembly location. Form (c¢) is similar to (a),
but disassembles from the last listed, assembled (see the A
command) , traced (see the T and U commands), or break address (see
the G and P commands). Since form (c) also lists 1/2 CRT screen, it
is often used following form (a) to continue the disassembly process
through another segment of the program. Forms (d) through (f)
parallel (a) through (c), but disable the symbolic features of SID.
In particular, the minus prefix prevents any symbol lookup
operations during the disassembly.

The L commana output takes the following form:

sSssss:
aaaa opcode operand .ttttt

where "sssss:" represent a symbol which labels the program location
civen by the hexadecimal address aaaa, when the symbol exists. The
"opcode" field gives the 8080 mnemonic for the instruction at
location aaaa, and the "operand" field, when present, gives the
hexadecimal values which follow the opcode in memory. The symbol
".ttttt" is printed when the instruction references a memory address
which matches a symbol in the table.

When the operation code at the list address is not a valid 8080
mnemonic, the output form is:

??= hh
where hh is the hexadecimal value of the invalid operation code.
Several valid L commands are listed below.
L100
L#1024,#1034
L .CRLF

LQICALL,+30
-L.PRBUFF+=I ,+°A"

All Information Presented Here is Proprietary to Digital Research

27

SID User”s Guide 3.9 The Move Memory (M) Command

3.9 The Move Memory (M) Command

The M command allows you to move blocks of data values from one
area of memory to another. The M command takes the form:

Ms,h,d

where s is the start address of the move operation; h is the high
(last) address of the move, and d is the starting destination
address to receive the data. SID transfers one byte at a time from
the start address to the destination address. Each time a byte
value is moved, the start and destination addresses are incremented
by one. The move prccess terminates when the start address
increments past the final f address. The command:

M100,1FF,3000

for example, replicates the entire block of memory from 0100 through
01FF at the destination arza from 3000 through 30FF in memory. The
data block from 0100 through 01FF remains intact.

Note that data areas may overlap in the move process. The
command :

M100,1FF,101

shows an instance where the value at location 0100 is propagated
throughout the entire block from 0101 through 0200.

A numbe. of valid M commands are listed below:

M-100,FFD0,100
M.X,+=2Z,.Y

M.GAMMA ,+FF, .DELTA
M@ALPHA+=X,+#50,+100

3.10 The Pass Counter {P) Command

The P command allows you to set and clear "pass points" and

"pass counts" in the program under test. The P command takes the
following forms:

(a) Pp
(b) Pp,c
(c) P
(d) -Pp
(e) -P

A "pass point" is a program location to monitor during
execution of the test program. Similar to a temporary breakpoint
(see the G command), a pass point causes SID to stop execution of
the test program each time an active pass point is reached. Unlike
a temporary breakpoint, a pass point is not automatically cleared
each time it 1is reached during execution. Further, unlike a

All Information Presented Here is Proprietary to Digital Research

28

SID User”s Guide 3.10 The Pass Counter (P) Command

temporary breakpoint, a pass point break occurs after the
instruction as the pass address is executed. 1In this way, you can
simply continue the execution of the test program under control of a
G command until the next pass point is executed, or until a
temporary breakpoint is reached.

Each pass point can have an optional "pass count" which
defaults to the value 1. The pass count enhances this facility by
allowing several passes through a pass point before the break
actually occurs. In particular, a pass count in the range 1-FF
(decimal 1 through 255) can be associated with a particular pass
point. Each time the instruction at a pass point is executed, its
corresponding pass count is decremented. The decrementing process
proceeds until the pass count reaches 1, at which time the break
address is printed and execution of the test program stops. When a
pass count reaches 1, the pass point becomes a permanent break
address which halts execution each time the instruction is executed.
Note “hat &« pass count does not change once it has reached 1. Up to

elght distinct pass points can be actively set at any particular
time.

Form (a) sets a pass point at address p with a pass count of 1,
causing address p to become a permanent breakpoint. Form (b) 1is
similar, except that the pass count is initialized to c. Form (cC)
displays these active pass points in the format:

CC pPpppP .SSSSS

where cc 1is the hexadecimal value of the pass count that is
currently associated with the pass address pppp, and sssss 1is a
symbol that matches the address pppp, 1f such a symbol exists.

Form (d) clears the pass point at address p, while form (e)
clears all active pass points. Note that the command:

Pp,0
is equivalent to form (4).

Each time a pass point is encountered, SID prints the pass
information in the format:

cc PASS pppp .SsSSSS

where c¢c 1is the current pass count at pass point pppp {cc 1is
decremented when greater than 1). As above, the symbol sssss
corresponding to address pppp is printed when possible.

The special command forms "-G" and "-U" to disable the
intermediate pass trace as the counters are decremented down to 1.
Suppose, for example, the TYPEOUT subroutine is a part of a program
under test, as shown in the G command above. Issue the command:

P.TYPEOUT, # 30

All Information Presented Here is Proprietary to Digital Research

29

SID User”s Guide 3.10 The Pass Counter (P) Command

This P command sets a pass point at the location 1labelled by
"TYPEOUT" which is assumed to exist in the symbol table. The pass
count is set to decimal 30, which allows the pass point to execute
30 times before a breakpoint is taken. Given that the pass point at
TYPEOUT is in effect, the command:

G

starts execution of the test program with no temporary breakpoint.
Each time the pass point is executed, the following pass trace 1is
executed.

1E PASS 0302 .TYPEOUT
(register trace)

1D PASS 0302 .TYPEOUT
(register trace)

1C PASS 0302 .TYPEOUT
(register trace)

01 PASS 0302 .TYPEOUT
“(register trace)

*303

The "register trace" shows the state of the CPU registers before the
"MOV E,A" at TYPEOUT is executed (see the "X" comrand for register
display format). ©Note that the final breakpoint address is 0303,
which follows the "MOV" instruction at the pass address 0302.
Depress any keyboard character during the pass point trace, and SID
immediately stops execution following the instruction at the pass
point address. 1If the command

-G
had been issued, the intermediate pass traces dc not appear at the
console. In this particular case, only the final trace:

01 PASS 0302 .TYPEOUT
(register trace)
*303

is printed. Although the intermediate pass traces are not
displayed, you can abort execution by depressing a keyboard
character. If an intermediate pass point is encountered with trace
disabled, SID aborts execution and returns control to the keyboard.

Temporary breakpoints can also be set while pass points are in
effect. That is, commands such as:

Ga, b
Ga,b,c
G,b
G,b,c

can be issued that intermix with the permanent breakpoints that are
set with the P command. Note, hcwever, that permanent breakpoints

All Information Presented Here is Proprietary to Digital Research

30

1

S e —— e

T T P ST TR

LT VG A e ST

SID User”s Guide 3.10 The Pass Counter (P) Command

override the temporary breakpoints that are given by b and c when
they cccur at the same address. Further, T and U command can trace
sections of the test program while permanent breakpoints are in
effect. In this case, the pass counts decrement as described above,
with a break taken when the count reaches 1,

Valid P commands are shown below:

P100 ,FF

P .BDOS
P@QICALL+30,#% 20
-P.CRLF

3.11 The Read Code/Symbols (R) Command

The R command, in conjunction with the I command, reads program
segments, symbol tables, and utility functions into the Transient
Program Area. The R command takes the forms:

(a) R
(b) RdA

The I command sets the filenames that will ne involved in the read
operation. Form (a) reads the program and/c.r symbol table given by
the I command without applying an offset to the load addresses.
Form (b) adds the displacement value d to each program load address
and/or symbol table address. Note that this addition takes place
without overflow checks so that negative bias values can be applied.
As a simple case, the usual initiation of SID:

A>SID X.CCOM

can be replaced by the following sequence of commands:

SID Starts SID without a test program
IX.COM Initialize the input line
R Read the test program to memory

The response from SID in this case is exactly the same as the normal
initialization, with the "NEXT PC END" message as described in
Section 1.

A program and symbol file can be read by preceding the R
command with an I command of the form:

I x.y u.v

where x.y is the program to load, and 'u.v is the symbol table file.
Note that y is usually the type "COM"; x is usually the same as u,
and v is usually the type "SYM". Thus, the following is a typical
command sequence of this form:

IDUMP.COM DUMP.SYM
R
All Information Presented Here is Proprietary to Digital Research

31

SID User”s Guide 3.11 The Read Code/Symbols (R) Command

This sequence reads the DUMP.COM program file into the Transient
Program Area and loads the symbol table with the information given
by DUMP.SYM. Programs with filetype "HEX" load into the locations
specified in the Intel formatted hexadecimal records, while programs
with filetype "UTL" are assumed to be SID utility functions that
load and relocate automatically. All other filetypes are assumed
absolute, and load starting at the base of the transient area.
Utility functions automatically remove any existing symbol
information when they relocate, but in all other cases the symbol

load operations are cumulative. 1In particular, the special input
form:

I* u.v
R

skips the program load since there is an asterisk in the program
name position, and loads only the symbol table file. Thus, a
sequence of commands of the above form can load the symbol tables
for selective portions of a large program that was 1nitially
developed in small modules.

Suppose, for example, that a report generation program has been
developed using MAC, which consists of the following modules:

IOMOD .ASM I/0 Module

SORT.ASM File Sorting Module
MERGE .ASM File Merge Module
FORMAT .ASM Repoiv Fo.iliat Module
MAIN.ASM Main Program Module
DATA .ASM Common Data Definitions

Suppose further that each module has been separately assembled using
MAC, resulting in several "HEX" and "SYM" files corresponding to the
individual program segments. The program segments have been brought

together using SID to form a memory image by typing the sequence of
commands:

SID Start the SID program
ITIOMOD .HEX Initialize IOMOD

R Read I/0 Module
ISORT.HEX Initialize SORT

R Read Sort Module
IMERGE .HEX Initialize MERGE

R Read Merge Module
IFORMAT .HEX Initialize FORMAT

R Read Format Module
IMAIN .HEX Initialize MAIN

R Read Main Module
IDATA .HEX Initialize DATA Area
R Read Initialized Data

Following this sequence, the Transient Program Area contains the
complete memory image of the report generation program. Suppose the
information printed following the last R command is:

All Information Presented Here is Proprietary to Digital Research

32

SID User”s Guide 3.11 The Read Code/Symbols (R) Command

NEXT PC END
1B3E 0100 B8EOO

which indicates that the high memory address is 1B3E. Using the H
command :

H1B

yvou find that 1B (hexadecimal) pages is the same as 27 (decimal)

pages. At this point, return to CCP mode by typing either a
control-C (warm start), or "GO" command, which leaves the memory
image intact. Then issue the command:

SAVE 27 REPORT.COM

to create a memory image file on the diskette. Then re-enter SID
using the following command:

SID REPORT.COM

to load the entire module for testing. Individual portions of the
report generator can then be symbolically accessed by selectively
loading symbol tables from the original modules. For example, the
MAIN and SORT modules can be debugged by subsequently loading the
corresponding symbol information:

I* MAIN.SYM
R
I* SORT.SYM
R

which prepares the symbol information for subsequent debugging.
Individual segments of the report generator are then tested and
reassembled. If an error is found in the SORT module, for example,
the SORT.ASM file is edited to make necessary changes, and the
module 1is reassembled with MAC, resulting in new "HEX" and "SYM"
files for the SORT module only. Given that enough "expansion"” area
has been provided following the SORT module, SID is reinitiated and
the SORT module is included:

SID REPORT.COM
ISORT.HEX SORT.SYM
R

which overlays the changed SORT module in the original report

generator memory image. You can then load additional symbol tables
by typing I and R commands such as:

I* MAIN.SYM
R

I* DATA.SYM
R

to access symbols in the SORT, MAIN, and DATA modules.

All Information Presented Here is Proprietary to Digital Research

33

SID User”s Guide 3.11 The Read Code/Symbols (R} Command

Note that several symbol table files can be concatenated using
the PIP program (see the "CP/M Features and Facilities" manual for
PIP operation) before SID is invoked. For example, the PIP command:

PIP NOBUGS.SYM=IOMOD.SYM,SORT.SYM,MERGE.SYM,FORMAT.SYM

creates a file called NOBUGS.SYM that holds the symbols for IOMCD,
SORT, MERGE, and FORMAT. The SID command:

SID REPORT.COM NOBUGS.SYM

locads the memory image for the report generator, along with the
symbol tables for these particular modules. Additional symbol files
can then be selectively loaded using I and R commands. The symbol
file for the entire memory image can then be constructed using the
PIP command:

PIP REPORT.SYM=NOBUGS.SYM,MAIN.SYM,DATA.SYM

which allows you to type:
SID REPORT.COM REPORT.SYM

to load the memory image for the report generator, along with the
entire symbol table. Recall, however, that the symbol table is
always searched in load-crder, and thus symbol names which are the
came 1in two modules must be distinguished using gualified symbolic
names (see Section 1).

As mentioned above, form (b) allows a displacement value d to
be added to each program address and symbol value. The displacement
varue has no effect, however, when the program is a SID utility
(filetypre "UTL"). The commands:

IDUMP .HEX DUMP.SYM
R1000

for example, cause the DUMP program to be loaded 1000 (hexadecimal)
locations above its normal origin, with properly adjusted symbol
addresses., Note that the bias value can be any symbolic expression,
and thus the command:

R-200

first produces a (two’s complement) negative number which is added
to each address. Since overflow from a 16-bit counter is ignored,
this R command loads the program 200 (hexadecimal) locations below

the normal load address, with symbol addresses biased by this same
amount,

Error reporting during the R command is limited to the standard
"?" response, which indicates that either the program or symbol file
does not exist, or the program or symbol file is improperly formed.
Similar to the SID startup messages, the response

All Information Presented Here is Proprietary to Digital Research

34

SID User”s Guide 3.11 The Read Code/Symbols (R) Command

SYMBOLS

occurs following program load, and appears before the symbol load.
Thus, a "?" error before the SYMBOLS response indicates that the
error occurred during the program load, while the "?" error after
the SYMBOLS message indicates that an error occurred during the
symbol file load operation. The exact position of a symbol file
error can be found by subsequently using the H command to view the
portion of the symbol table that was actually loaded.

3.12 The Set Memory (S) Command

The S command allows you to enter data into main memory. The
forms of the S command are:

(a) Ss
(b) SWs

Form (a) allows data to be entered at location s in byte (8-bit) or
character string mode, while form (b) stores word (l6-bit) mode data
items. 1In either case, the SID program prompts the console with
successive addresses, starting at location s, along with the data
item presently located at that address. As each line prompt occurs,
yocu can type a single carriage return or a symbolic expression
(followed by a carriage return), which is evaluated and becomes the
new data item at that location. If you type a single carriage
return, then the dciz ¢”~ment at that location remains unchanged.
The S command terminates whenever an invalid data item is detected,
or when you type a single "." followed by a carriage return. Form
(a) allows single byte data, and produces the standard "?" when a
double byte value is entered with a non-zero high-order byte. 1In

addition, form (a) also allows long ASCII string data to be entered
in the format:

"cceece . . .ccecc

where the sequence of c¢”s (terminated with a carriage return)
represents graphic ASCII characters to be entered at the prompted
location. No translation from lower- to upper-case takes place
during entry. Further, the next prompted address is automatically
set to the first unfilled location following the input string.

A valid input sequence following the command:

S100

is shown below, where the SID prompt is given on the left, and the

operator”s input lines are shown to the right, where "cr" denotes
the carriage return key.

All Information Presented Here.is Proprietary to Digital Research

35

SID User”s Guide 3.12 The Set Memory (S) Command

SID PROMPT OPERATOR INPUT
0100 C3 34cr

0101 24 $#254cr

0102 Cr cr

0103 4B "ASCIIcr
0108 6E =X+5cCr

0109 E2 “$7cr

010A D4 .Cr

A valid double byte input sequence following the command:
SW.X+#30

is shown below:

SID PROMPT OPERATOR INPUT
2300 006D 44Fcr

2302 4rF32 @GAMMACTYT
2304 33E2 cr

2306 FF1ll X+=I-#20cr
2308 348F ©.Cr

3.13 The Trace HMode (T) Command

The T command allows you to si.gle .vr multiple step a test
program while viewing the CPU registers as they change. In
addition, you can use the T command with SID utilities to collect
test program data for later display (see the section entitled "SID

Utilities"). The forms of the T command are:
(a) Tn
(b)y T
(c) Tn,c
(d) T,c
(e) ~T (with options a - d)
(£) TW (with options a - d) B
(g) -TW (with options a- d) ‘

Form {(a) traces program execution from the current value of thé
program counter PC (see the "X" command for PC value as well as the
format of the CPU state display). Form (b) is the trivial case of
(a) with an assumed single step count of n = 1. In either case, the
SID program displays the register state, along with the decoded

instruction (assuming "-A" is not in effect) before each instruction
is executed. For example, the command: :

T4

traces four program steps, producing the format:

All Information Presented Here is Proprietary to Digital Research

36

SID User”s Guide * 3.13 The Trace Mode (T) Command

Valid trace commands are shown below:

T100
T#30, .COLLECT
-TWw=I,3E03

3.14 The Untrace Mode (U) Command

The U command is similar to the T command given above, except
that the CPU register state is not displayed at each step. Instead,
the test program runs fully monitored so that program execution can
be aborted at any time, or for the collection of data for a SID

utility function. The forms of the U command parallel the T
command :

(a) Un

(b) U

(<) Un,c

(d) U,c

(e} * -U (with options a -~ 4d)

(f) UW (with options a - d)
(g) -UW (with options a - 4d)

Torms (a) through (d) perform the analogous functions of the "T"
command forms (a) through (d), without displaying the register state
at each step. Forms given by (e) differ from the T command;
however, instead of disabling the symbolic features, the following
comeand forms:

disable the intermediate pass point display (see the "P" command),
until the corresponding pass counts reach 1.

Forms given by (f) correspond to the "T" command exactly,
except that the trace display is disabled. In this case, the
current subroutine level is run fully monitored, but higher
subroutine levels run in real time.

Forms given by (g) are similar to (f), but disable the pass
point display, as described above.

You can abort execution in untrace mode by depressing any
keyboard character. The break address is displayed, and control
returns to SID command mode.

valid U commands are given below:
UFFFF

U#10000, .COLLECT
UW=GAMMA , .COLLECT

All Information Presented Here is Proprietary to Digital Research

39

SID User”s Guide 3.13 The Trace Mode (T) Command

(register state 1) opcode 1

label:
{register state 2) opcode 2
label:
(register state 3) opcode 3
label:

(register state 4) opcode 4 *bbbb

showing the register state before each corresponding operation code
1s executed. Each operation code is written in the same format as
the L and X commands, with interspersed symbolic operands decoded
wherever possible. In addition, instructions that reference memory,
such as INR M, are listed with the memory operand in the form:

opcode M =hh

where "opcode" is the memory referencing instruction, and hh is the
hexadecimal value contained in the memcory address given by the HL
register pair before the operation takes place. The interspersed
labels show program addresses when they occur in the flow of
execution. The final break address, denoted by "*bbbb" above, shows
the value of the program counter after opcode 4 is executed. You

can display the CPU state at this point by typing the single
character "X" command.

Forms (c) and (d) are used only with the SID utilities, and
automatically perform a CALL ¢ after each instruction executes. The
value of ¢ corresponds to a vtility entry address for data
collection. The fc?lov*ag sections detail these forms. Note,
however, that form (d) is equivalent to (c) with a single step count
of n = 1.

Forms given by {(e) parallel (a) through (d), but the preceding
minus sign disables the symbolic features of SID. 1In particular,
neither the symbolic operands nor the symbolic labels are decoded in
the trace process. This option speeds up the operation of SID
slightly in trace mode when large symbol tables are present.

Forms given by (f) parallel (a) through (d), but perform a
"trace without call" function. It is often useful, for example, to
trace mainline program code, but not trace into the subroutines
which are called from the mainline execution. The TW command
performs this function by running the test program in real time
whenever a subroutine is entered, returning to fully traced mode
upon return to the current subroutine level. If a return operation
takes place at the current level (i.e., a RET is executed in fully
traced mode), then tracing continues at the encompassing subroutine
or mainline program level. For example, suppose the mainline and
subroutine structure shown below exists in a particular program:

All Information Presented Here is Proprietary to Digital Research

37

SID User”s Guide

3.13

The Trace Mode

(T) Command

MAINLINE SUBROUTINE 1 SUBROUTINE 2 ... SUBROUTINE n
.. S1l: MOV A,C S2: MOV A,D Sn: MOV A,L
CALL S1
MOV B,C CALL S2
MOV C,D MOV C,E CALL S3 ... MOV C,L
.. MOV D,E MOV D,H MOV D, L
JMP 0000 RET RET RET

Suppose further that the test program is stopped within subroutine
S1 before the call to subroutine S2, The command:

T#100

traces from S1 through S2, S3, and so forth until level Sn 1is
encountered. Although this form of the trace could be useful, it is
often more enlightening to trace only at a particuvlar subroutine
level, and view the effects of the subroutine levels above S1. In
this manmer, an offending subroutine is often easily discovered
without tracing non-essential program flows. If you type the
following command while at subroutine level S1, all subseqguent
levels from 82 and beyond are executed in real time as if a "G"
command had been performed at each CALL within S1.

TW#100

Upon executing the RET instruction within S1, tracing resumes at the
main..ne level. Any subroutine calls following CALL S1 at the main
level are not subsequently traced.

Forms gjiven by (g) parallel (a) through (d), but disable the
symbolic features of SID in the same manner as form (e).

Note that SID allows tracing up to Read Only Memory
program cocde. At the point ROM is entered, SID stops the trace
operation, and runs the ROM code in real time. An automatic
breakpoint is set which intercepts program control when ROM code 1is
exited. The assumption, however, is that ROM code was entered via a
subroutine call (CALL or RST n), not via a PCHL or JMP instruction.
In any case, the return address following the ROM execution is taken
as the topmost address in the test program”s stack.

(ROM)

Note further that SID does not trace execution of calls through
the BDOS code, since these operations are often quite lengthy, and
can occassionally require real time operation to perform various
disk functions. Thus, entry to the BDOS is intercepted by SID, and
resumed following completion of the BDOS function.

Abort tracing at any time by depressing a keyboard character.
Do not use the RST instruction to terminate trace functions.

All Information Presented Here is Proprietary to Digital Research

38

SID User”s Guide 3.15 The Examine CPU State (X) Command

3.15 The Examine CPU State (X) Command

The X command allows you to examine and alter the CPU state of
the program under test. The X command takes the following forms:

(a) X
{b) Xf
(c) Xr

Form (a) displays the entire CPU state in the format:
CZMEI A=aa B=bbbb D=dddd H=hhhh S=ssss P=pppp Op sym

where C, Z, M, E, and I represent the true or false conditions of
the CPU carry, =zero, minus, even parity, and interdigit carry,
respectively. If the position contains a "-" then the corresponding
flag is false, otherwise the flag letter is printed. The byte value
aa is the value of the A register, while the double byte wvalues
bbbk, dddd, hhhh, ssss, and pppp, give the 16-bit values of the BC,
DE, HL, Stack Pointer, and Program Counter, respectively. The field
marked "op" gives the decoded mnemonic instruction at location pppp,
unless "~-A" is in effect, in which case the hexadecimal value of the
operation code is printed. The "sym" field contains a decoded
operand, when possible. Refer to the L command for the format of
the symbolic instruction decoding. The single letter "X" command
might result in a display of the form:

C-M-- A=03 B=34EF D=2000 H=334E S=4323 P=0100 LDA 0223 .0Q

which, for example, indicates that the carry and minus flags are
true, while the zero, even parity, and interdigit carry flags are
false. Further, the A register contains 03, while the B, C, D, E,
H, and L re¢isters contain the hexadecimal values 34, EF, 20, 00,
33, and 4E, respectively. The value of the Stack Pointer is 4323,
and the Program Counter is at location 0100. The next instruction
to execute at location 0100 is an accumulator load (LDA) from
location 0233. Further, the first symbol in the table that matches
address 0233 is Q.

Form (b) allows you to change the state of the CPU flags. 1In
this case, f must be one of the condition code letters: C, Z, M, E,
or I. The present state of the flag is displayed (either the flag
letter if true, or a "-" if false). You can either type a single
carriage return, which leaves the flag in its present state, or you
can type a 1 to set the flag true, or a 0 to reset the flag to
false. Given that the carry flag is true, for example, the command:

XC
produces the SID response:

cC

followed by a space, indicating that the carry is currently set,
awaiting possible change. Enter a carriage return to leave the flag

All Information Presented Here is Proprietary to Digital Research

40

SID User”s Guide 3.15 The Examine CPU State (X) Command .

set, or a 0 to reset the carry to false. Similarly, if the zero:
flag is false, the command:

X7

produces the SID response:

indicating that the zero flag is false. Enter a carriage return if
the state 1is to remain unchanged, or a 1 to set the zero flag te
true.

Form (c) allows alteration of the individual CPU registers,.
where r is one of the register names A, B, D, H, §, or P. In this
case, the current content of the register is displayed, and the
console is prompted for input. If you type a single carriage
return, the data value remains unchanged. Otherwise, the symbolic
expression is evaluated and becomes the new value of the register.:
Only byte wvalues are acceptable when the "XA" form is used, while
double byte values are accepted in the remaining forms. Note that
the BC, DE, and HL registers must be altered as a pair. The SID
interaction shown below is typical when the A register is altered:

XZ.

2=03 45 cr
where you type the "XA"; SID prints the "03" as the value of the A
register, and you type "45" =% a replacement for A”s value. The

"cr" represents the carriage return key in this example and in the
eramples that follow. The following interactions with SID prOVlde
additional examples in the format described above:

XB
B=34EF cr (data remains unchanged)

XD
D=2000 2300 cr (D changes to 23)

XH
H=334F .GAMMA cr

XS
S=4323 @STKPTR+#100 cr

All Information Presented Here is Proprietary to Digital Research

41

Section 4
SID Utilities

SID utilities are special programs that operate with SID to
provide additional debugging facilities. As described in Section 1,
you load a SID utility by typing:

SID x.UTL

where x is the name of a utility program, described in the following
sections. Upon initiation, the utility program loads, relocates,
and prompts the console for any necessary parameters. Then you
collect the necessary program test data (using the U or T command),
and display the information using a call to the utility display
subroutine. The mechanisms for system initialization, data
collection, and data display are given in detail below.

4.1 Utility Operation

A particular SID utility loads into memory in much the same
manner as a normal test program. The utilities, however,
automatically move themsalves into high memory, occupying the region
directly below the SID program, as described in Section 1. The
utility load operation can be accomplished by simply typing the
~tility name with the SID command as shown above. You can also load
a utility during the SID execution, as described in the I and R
commands. Recall, however, that all existing symbol information is
removed when the utility loads, and must be reinitialized if
required for the debugging run.

Normally, a SID utility has three primary entry points:
INITTAL for utility (re)initialization, COLLECT for data collection,
and DISPLAY for data display. After loading, the utility sets up

these symbols in the table, and types the entry point addresses in
the format:

LJINITIAL = 1iiii
.COLLECT = cccc
.DISPLAY = dddd

where 1iiii, cccc, and dddd are the hexadecimal addresses of the

three entry points. Note, however, that the three symbolic names
are equivalent to these three addresses.

Following initial sign on, the utility may prompt the console
for additional debugging parameters. After the interaction is
complete, you can use the I and R commands to load test programs and
symbol tables to proceed with the debug session.

All Information Presented Here is Proprietary to Digital Research

43

SID User”s Guide 4.1 Utility Operation

During the debug run, data collection takes place by running
the test program in monitored mode using the U or T commands.
Either of the following commands:

UFFFF, .COLLECT

UFFFF ,cccc
direct the SID program to run the test program from the current
Program Counter for a maximum of 65535 (FFFF hexadecimal) steps,
with a call to the data collection entry point of the utility
program, Each instruction breakpoint sends information to the
utility program, where it is tabulated for later display. Note that
in this particular case, you can stop the untrace mode by depressing
the return key before the sequence of 65535 steps is completed.

Following a series of data collection operations, enter either

of the following commands that call the utility DISPLAY entry point
to print the accumulated data:

C.DISPLAY
cddad

Then, resume the data collection process, as described above,
followed by additional display operations.

At any point, you can reinitialize the utility by typing either
of the following commands:

C.INITIAL
Ciiii

which causes reinitialization of the utility tables. The utility

then prompts for additional parameters to complete the
reinitialization process.

Note that loading and executing more than one utility function
during a debugging session can produce unpredictable results.

The remaining sections present the functions of the SID
utilities. :

4.2 The HIST Utility

The HIST utility creates a histogram (bar graph) of the
relative frequency of execution in selected program segments of a
program under test., The HIST utility allows you to monitor "hot

spots”" in the test program where the program is executing most
frequently.

After initial sign-on, as described in the previous section,
the HIST utility prompts the input console:

TYPE HISTOGRAM BOUNDS

All Information Presented Here is Proprietary to Digital Research

44

SID User”s Guide 4.2 ‘The HIST Utility
You must respond with two symbolic expressions, separated by a
comma :

1111, hhhh
where 1111 is the lowest address to monitor, and hhhh is the highest

address. To collect histogram information, you must use one of the
following command forms:

Tn,C T,C T™Wn,cC ™, C -Tn, C -T,cC -TWn,cC -TW, C
Un,c g,c UWn, c UwW, c -Un, cC -U, c -UWn, C -UW, cC

where ¢ is either .COLLECT, or the address corresponding to the

COLLECT entry point. Although any of these commands may be used,
the form:

Un, .COLLECT

is nearly always used since the trace output is disabled, the test

program is fully monitored, and data collection takes place at each
program step.

Following a series of data collection operations, display the
histogram by typing:

C.DISPLAY or cddadd

The histogram is then printed in the following format:

HISTOGRAM:
ADDR RELATIVE FREQUENCY, MAXIMUM VALUE = nmmm
aaaa * ok k k%
bbbb * k kkk k%
ccee khkkkkkkkk
XXX}.{ kkkkkkkkkikk
YVVY khkkhkbkhkhkkhkkkhkkhkkhhhkkhhkhkdhkhhkkhkhkkhkkhkhkhkhkkhkkhkkkik
2277 kkkkkk

where addresses aaaa through zzzz span the range from the low to
high address range given in the initialization of HIST. The maximum
value mmmm is the largest number of instructions accumulated at any
of the displayed addresses, and the asterisks represent the bar
graph of relative instruction frequencies, scaled according to the
maximum value mmmm. The address range is automatically scaled over
64 different address slots (aaaa, bbbb, ... ,zzzz, above), with a
maximum of 64 asterisks in any particular bar of the graph.

Given the above display, the "hot spot" is around the address
range xxxx to zzzz. In this case, type either of the following
commands to reinitialize the HIST utility:

C.INITIAL
Ciiii

All Information Presented Here is Proprietary to Digital Research

45

SID User”s Guide 4.2 The HIST Utility

Then the HIST initialization prompt and response follow, as shown
below.

TYPE HISTOGRAM BOUNDS XXXX,2ZzzZZz
You can then rerun the test program using the command:

UFFFF, .COLLECT

After leaving enough time for the test program to reach "steady
state,”" interrupt program execution by typing a return during the
monitored execution. The display function is then reinvoked to
expand the region between xxxX and zzzz, resulting in a more refined
view of the frequently executed region.

The L command can subsequently determine the exact instructions
that are most frequently executed. 1If possible, the sequence of
instructions can be somewhat improved, with an overall improvement
in program performance.

4.3 The TRACE Utility

The TRACE utility obtains a backtrace of the instructions that
led to a particular break address in a progrem under test, For
example, a program might have an error conditicn that arises from a
sequence of instructions that are difficult to find under normal
testing. In this case, TRACE can collect program addresses as the
test program executes, and display these addresses and instructions
in most recent to least recent order when you request. To invoke
SID with the TRACE utility, enter the following command:

SID TRACE.UTL
The utility responds as follows:
INITIAL iiii

COLLECT cccce
DISPLAY = dddd:

In this case, the TRACE utility also prints the message:
READY FOR SYMBOLIC BACKTRACE
which indicates that the assembler/disassembler portion of SID is

present, and will disassemble instructions when the backtrace is
requested.

You can then proceed to load a test program with optional

symbol table. For example, ycu can load the DUMP program, by typing
the command:

IDUMP.COM DUMP.SYM
R

All Information Presented Heve is Proprietary to Digital Research

46

SID User”s Guide 4.3 The TRACE Utility

The usual response:
"NEXT pPC END"

indicates that the test program is loaded. At this point, the SID
debugger is executing in high memory, along with the TRACE utility
and the test program symbols. The test program is present in low
memory, ready for execution.

To obtain the simplest backtrace, type one of the U or T

command forms shown with the HIST utility. In particular, a U
command of the form:

U#500, .COLLECT

executes 500 (decimal) program steps, and then automatically stops
program execution. Type the following command to obtain a backtrace
to the stop address:

C.DISPLAY

This command causes TRACE to display the label, address, and
mnemonic information in the form:

label-255:

addr-255 opcode-255 sym-255
label-254:

addr-254 opcode-254 sym-254
label-253:

addr-253 opcode—-253 sym-253
label-000: '
addr-000 opcode~-000 sym-000

where label-255 down through label-000 represent the decoded
symbolic labels corresponding to addresses given by addr-255 down
through addr-000, when the symbclic labels exist. Opcode-255 down
through opcode-000 represent the mnemonic operation codes
corresponding to the backtraced addresses, and sym-255 down through
sym-000 denote the symbolic operands corresponding to the operation
codes, when the symbols exist. The operation codes are displayed in
the same format as the list command. Note that in this display, the
most recently executed instruction is at location addr-255, while
the least recently executed instruction is at location addr-000.
TRACE accounts for up to 256 instructions, which accumulate in T or
U mode. The accumulated instructions are not affected by the
DISPLAY function, but are cleared by the following call to

reinitialize:

C.INITIAL

Full benefit of the TRACE utility requires concurrent use of
TRACE with pass points (see the "P" command). 1In particular, pass
points are first set at program locations that are of interest in
the backtrace. The program is then run to an intermediate location

All Information Presented Here is Proprietary to Digital Research

47

SID User”s Guide 4.3 The TRACE Utility

where the test begins. At this intermediate test point, use the U
command to execute the test program in fully monitored mode, with

data collection at the COLLECT entry point of TRACE. Upon
encountering one of the pass points in U mode, program execution
breaks, and you regain control in SID command mode. The DISPLAY

function of TRACE is then invoked to obtain the required backtrace
information.

As an example of this process, suppose the DUMP program is in
memory with the TRACE utility, as shown above. Suppose further that
you want to view the actions of the DUMP program on the first call
to BDOS (i.e., the first call from DUMP to the CP/M Basic Disk
Operating System, through location 0005). Assuming the symbol table
is loaded, type the command:

P .BDOS

which sets a pass point at the BDOS entry, with corresponding pass

count = 1. Then execute DUMP in monitored mode, collecting data at
each instruction:

UFFFF, .COLLECT

The untrace count of FFFF (65535) instructions is, of course, too
many in this case, but the assumption is that the DUMP pcogram stops
at the BDOS call before the instruction count is exr.eeded (if it
does not, depress any keyboard character to force a program break).

In this case, the DUMP program executes only a few instructions
before the BDOS call, resulting in the break information:

01 PASS 0005 .BDOS

~2EI A=80 B=0014 D=005C H=0000 S=0249 P=0005 JMP CCDF
*CCDF

showing the pass count 1, pass address 0005, symbolic location BDOS,
register state, and break address. Since execution to this point
was monitored and data was collected, invoke the TRACE function:

C.DISPLAY
which results in the display:

BDOS:
0005 JMP CCDF
01CA CALL 0005 .BDOS
01C8 MvVI C,0r
01C5 LXI D,005C .FCB

01C2 STA 007C .FCBCR
SETUP:

01C1 XRA A

010A CALL 01Cl .SETUP

0107 LXI SP,0257 .STKTOP

0104 SHLD 0215 .OLDSP

0103 DAD SP

0100 LXI H,0000

All Information Presented Here is Proprietary to Digital Research

48

— |

SID User”s Guide 4.3 The TRACE Utility

Note that in this particular case, only 11 instructions were
executed before the BDOS call, and thus the full 256 instruction
capacity had not been exceeded. 1In fact, the backtrace shown above
gives the complete history of the DUMP execution, from the first
instruction at address 0100. You can then proceed to execute the
DUMP program further by simply typing:

UFFFF, .COLLECT

with a break at the following call on BDOS. Given that the program

execution 1is to stop on the 20th call on BDOS, type the pass
command :

P .BDOS,# 20

to set the pass count at 20 (decimal). Enter the command:

UFFFF, .COLLECT

if intermediate passes are to be traced. Alternatively, type the
command : '

-UFFFF, .COLLECT

to disable intermediate traces. 1In =2ither case, execution stops at
the 20th BDOS call, and you can enter the display command:

C.DISPLAY
to view the trace to this particular BDOS call.

Abort long typeouts by typing any keyboard character during the
display. The ctl-S key freezes the display during output. Finally,
recall that you can issue "C.DISPLAY" any number of times to

reproduce the backtrace since the command does not clear the TRACE
buffer.

You can also use the TRACE utility when the disassembler module
is not present. In this case, the instruction addresses are listed
in the trace, while the mnemonics are not included. For example,
the sequence of commands shown below loads the TRACE utility without

the disassembler module, followed by the DUMP program without its
symbol table:

SID Load the SID Program

-A Remove the Disassembler
I TRACE.UTL Ready the TRACE Utility
R Read the TRACE Utility
IDUMP .COM Load the DUMP Program

In this case, the TRACE utility prints the following sign-on
message:

"-A" IN EFFECT, ADDRESS BACKTRACE

All Information Presented Here is Proprietary to Digital Research

49

SID User”s Guide 4.3 The TRACE Utility

The backtrace information is subsequently displayed in the format:

addr-255 addr-254 addr-253 . . . addr-248
addr-247 addr-246 addr-245 , . . addr-240

addr-007 addr-006 addr-005 , . . addr-000

All Information Presented Here is Proprietary to Digital Research

50

Section 5
SID Sample Debugging Sessions

This section contains several examples of SID debugging
sessions. The examples are based upon a "bubble sort" of a byte
value 1list. The bubble sort program is first listed in its
undebugged form. A series of test, edit, and reassembly processes
are shown which result in a final debugged program. In each case,
the operator interaction with CP/M, ED, MAC, or SID is shown in
normal type, while comments on each of the processes are given
alongside in italics.

The dialogue that follows contains the following sequence of
operations:

(1) TYPE SORT.PRN Lists initial SORT program.
(2) TYPE SORT.SYM Shows the SORT symbol table.
(3) TYPE SORT.HEX Shows the SORT HEX file.
{4) SID SORT.HEX SORT.SYM lst debugging session.
(5) ED SORT.ASM 1st re—edit of SORT program.
{(6) MAC SORT lst reassembly of SORT.
(7) TYPE SORT.SYM . Shows new symbol table.
(8) SID SORT.HEX <SORT.SYM 2nd debugging session.
(9) ED SORT.ASM 2nd re-edit of SORT program,
(1¢) MAC SORT 2nd reassembly of SORT.
(1') SID SORT.HEX SORT.SYM 3rd debugging session,
(12) ED SORT.ASM 3rd re-edit of SORT.
(13) MAC SORT 3rd reassembly of SORT.
(14) LOAD SORT Create a COM file for SORT.
(15) SID SORT.COM SORT.SYM 4th debugging session.
(16) SID SORT.COM SORT.SYM Re-entry to SID for debugging.
{17) SID SORT.COM SORT.SYM Re-entry to SID for debugging.
(18) SID SORT.COM SORT.SYM Re-entry to SID for debugging.
(19) ED SORT.ASM 4th re-edit of SORT.
(20) MAC SORT 4th reassembly of SORT.
(21) SID SORT.HEX SORT.SYM 5th debugging session,
(22) ED SORT.ASM 5th re-edit of SORT.
(23) MAC SORT 5th reassembly of SORT.
(24) SID SORT.HEX SORT.SYM 6th debugging session.
(25) ED SORT.ASM 6th (last) re-edit of SORT.
(26) MAC SORT S$+S 6th (last) reassembly.

Following the debugging sessions, the final corrected SORT program
is given in its debugged form. :

All Information Presented Here is Proprietary to Digital Research

51

SID User”s Guide 5 SID Sample Debugging Sessions

Three separate debugging sessions are then shown that use the
HIST and TRACE utilities to monitor the execution of the tested SORT
program. The operations shown here include:

(27) SID HIST.UTL : Load the HIST Utility.
(28) SID TRACE.UTL Load the TRACE Utility.
(29) SID Load SID, TRACE follows.

As a final example, a simple program that calls the BDOS is
listed, followed by a single debugging session. This particular
example shows the actions of SID when subroutines are traced,

followed by calls on the CP/M BDOS. The operations in this case
are:

(30) TYPE IO.PRN List the IO program
(31) SID IO.HEX I0O.SYM Enter SID for debugging

All Information Presented Here is Proprietary to Digital Research

52

SID User”s Guide 5 SID Sample Debugging Sessions

<:::>TYPE SORT.PRN
; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE

; ELEMENTS OF 'LIST' ARE PLACED INTO
; DESCENDING ORDER USING BUBBLE SORT

0100 CRG 100H ;BEGINNING OF TPA
0000 = REBOOT tQu 000C0H ;CP/M REBOQT LOCATION
0100 213801 SORT: LXI H,SW

0103 3501 MVI M, 1 ;SW =1

0105 213901 LXI H, I ; INDEX TO SORT LIST
0108 3600 MVI M,0 ;1 =0

: COMPARE [WITH ARRAY SIZE
COMP: :HL ADDRESS INDEX I

010A 3A6201 LDA N ;LENGTH OF VECTOR
0100 8¢t CMP M ;CHECK FOR N=]
010E C21901 INZ CONT ;CONTINUE IF UNEQUAL
3 END OF ONE PASS THROUGH LIST
0111 213801 LXI H,SW ;NO SWITCHES?)
0114 7€ MOV AM ;FILL A WITH SW
0115 87 ORA A ;SET FLAGS

; END OF SORT PROCESS, REBQOQT
0116 €30000 STOP: JMP REBOOT ;RESTART CCP

CONTINUE THIS PASS

CONT:
; ADDRESSING I, SO LOAD LIST(I)
0119 5F MoV E,A ;LOW(I) TO £ REGISTER
011A 1600 MVI 0,0 JHIGH(I) = 0
011C 215A01 LXI H,LIST ;BASE OF LIST
0liF 19 DAD D ;ADDR LIST(I)
0120 7t MOV AM ;LIST(I) IN A REGISTER
0121 23 INX H ;ADDR OF LIST(I+1)
0122 Bt CcMP M sLIST(I):LIST(I+1)
0123 DA3101 JC INCI ;SKIP IF PROPER ORDER
; CHECK FOR LIST(I) = LIST(I+1)
0126 CA3101 JZ INCI ;SKIP IF EQUAL
; ITEMS ARE OUT Of ORDER, SWITCH
0129 4€ MOV C,M ;0LD LIST(I+1) TO C
012A 77 MOV M,A JNEW LIST*I+1) TO M
0128 2B DCX H ADDR LIST(I)
0laCc 71 MOV M,C ;NEW LIST(I) TO M
012D 213801 LXI H,SW ;SWITCH COUNT IS SW
0130 34 INR M JSW = SW + 1
INCI: ; INCREMENT INDEX I
0131 213901 LXI H, 1
0134 34 INR M ;T =1+ 1 i
0135 C30A01 JMP come ;TO COMPARE 1 WITH N-1
; DATA AREAS
0138 SW: 0s 1 ; SWITCH COUNT
0139 1: N 1 ; INDEX
013A - DS 32 ;16 LEVEL STACK
STACK:
015A 0503040A08L1ST: DB 5,3,4,10, 8,130,10,4
0162 08 N:]3] $-LIST ;LENGTH OF LIST
0163 END

All Information Presented Here is Proprietary to Digital Research

53

SID User”s Guide 5

SID Sample Debugging

TYPE SORT.SYM

10A ComMpP 0119 CONT 0139 I 0131 [NCI 015A LIST
0162 N 0000 RE3OOT 0100 SORT 015A STACK 0116 STOP
0138 sSu -

@ TYPE SORT.HEX
:10010000213801360121390136003A62018£C21997
:10011000012138017€£87C300005F 1600215A011982
:100120007£22BEDA3101CA31014E772871213801AD
:080130003421390134C30A0136
:09015A000503040A08820A0408E6

10000000000

(:::) SID SORT.HEX SORT.SYM

SID VERS 1.4
SYMBOLS

NEXT PC END
0163 0100 5587
#0.LIST,+=N-1
015A: 05 03 04 OA 08 82
0160: OA 04 ..

#G,.STOP Execute test program until "STOP" symbol address encountered

Start SID with HEX and SYM files

Next free address is 163, Program Co unter is 100
and end of TPA is 55B7

Display initial list of items to sort

*Ql16 .STOP
#D.LIST,+=N-1
015A: 05 03 04
0160: 0A 04 ..
#XP

P=0116 100
#710

Now at the STOP address, examine data list:

0A 08 82

Hasn't changed!

where s the program counter?
reset PC back to beginning and try again with trace on:

H=0138 $=0100 P=0100 H,0138 .SW
H=0138 $=0100 P=0103 M,01 .SW
H=0138 =0100 P=0105 H,0139 .1
H=0139 5=0100 P=0108 M,00 .1

8=0000
1 8=0000
3=0000
3=0000

D=0008
D=0008
0=0008
0=0008

LAI
MVI
LXT
MV

SwW=1
=0

8=0000
3=0000
8=0000

D=0008
D=0008
D=0008

H=0139
H=0139
H=0139

5=0100
$=0100
5=0100

P=010A
P=01GD
P=010E

LDA
cMe
JINZ

0162 .N

M=00 . I

0119 .CONT
No, so cu.npai<

N=[?

8=0000
8=0000
8=0000
8=0000
8=0000
8=0000
3=0000
8=0000

D=0008
D=0008
0-0008
D=0008
D=0008
D=0008
0=0008
0=0008

H=0139
H=0139
H=0139
H=01%A
H=0162
H=0162
H=0163
H=0163

$=0100
$=0100
$=0100
$=0100
$=0100
$=0100
5=0100
$=0100

P=0119
P=011A
P=011C
P=011F
P=0120
P=0121
P=0122
P=0123

MOV ELA
MVI D,00
LXI H,015A .LIST
“-=-1 DAD D
---=1 MOV AM .
---=1 H
----1 M
C-M-1 0
INCI:
C-M-1
*0134
#GO

N What's this?
Why did we

8 fetch N?

1 L INCI

[NX
CMP
Je

> D> >k D
L
[olooRoNoNoNe Rl
[esqeNeeNer e NoT RS

=5
13

A=08 B=0000 D=0008 H=0163 $=0100 P=0131 LXI H,0139 .I

Looks like we've discovered a bug! We have entered at "CONT"
with N'in-the accumulator, rather than [, which is expected!

ED SORT.ASM Back to the editor to make the

®#A Bring all the text into memory

changes

Sessions

LIST(i), LIST(i+1)

*y Enter Verify mode for line numbers, then find the place to change
1: *FADDRESSING
28: *OLT
28: ADODRESSING I, SO LOAD LIST(I) pelete the line
28: *KT
28: MOV £,A ;LOW(I) TO £ REGISTER
28: *]
28: LDA I ;LOAD I TO A REGISTER Insert the
29: ctl-Z change
29: *E

Terminate the editing session

All Information Presented Here is Proprietary to Digital Research

54

SID User”s Guide 5 SID Sample Debugging Sessions

MAC SORT
CP/M MACRQ ASSEM 2.0
0166 -
001H USE FACTOR Re-assemble the SORT program

END COF ASSEMBLY

! .
TYPE SORT.SYM Here's the symbol table:

O010A COMP 0119 CONT 013C I 0134 INCI 015D LIST

0165 N 0000 REBOOT 0100 SGRT 0150 STACK 0116 STOP
0138 SW

SI0D SORT.HEX SORT.SYM

é‘?ﬁagﬁgs L4 Let's try again, load the HEX and SYM files
NEXT PC END

0166 0100 5587

#P.STOP Set a "pass point" at STOP to prevent reboot
#G Start (unmonitored) execution

01 PASS 0116 .STOP We made it to the STOP label, check values
----- A=7C 8=0008 D=0081 H=0138 S=0100 P=0116 JMP 0000 .REBOOT
*0000 .REBQOT

FH=N What's the value of the byte variable N?
0082 #130 1307 Very strange! How did that happen?
#0.LIST,+7 Oh well, let's look at the data values:
g}gg 83 82 82 64708 They are almost sorted, looks like we have
#ISOFiT x0T some trouble near the end of the vector,

. let's reload the machine code and try
#R again:
NEXT °C END ’
0166 0100 5587
#xXp
P=0100 Program counter remains at 0100, w.at
4p are the ac*™ pas~ : 2ints?
01 0lls .STOP The one at STOP remains set, let's also
#P.SORT,FF monitor the SORT loop point, but not
#G break right away.
FF PASS 0100 .SORT Here's the first time through SORT
----- A=7C 8=0008 D=0081 H=0138 $=0100 P=0100 LXI H,013B .SW
01 PASS 0116 .STOP It stopped immediately! It doesn’t look good!
----- A=79 8=0008 D=0081 H=0138 S$=0100 P=0116 JMP Q000 .REBOOT
*0000 .REBQQT We know there should have been several loops
#I1SORT.HEX through the SORT label, since the data is
"R unordered. Let's try again — reload the code
NEXT PC END (note that the reload is necessary here, since
2166 0100 5587 the data (s initialized in the code area).
p
01 0116 .STOP What act{ve pass points exist?
FE 0100 .SORT Wait a "minute -~ referring back to the
#GO original listing, it appears that the code

preceding the STOP label is incomplete:

there should be a conditional jump back to

the SORT label - maybe that's why the program
never makes {t back!

All Information Presented Here is Proprietary to Digital Research

55

SID User”s Guide 5 SID Sample Debugging Sessions

@ED SORT.ASM Oh well, back to the editor for a
*HAV quick fix. Append all text (#A), and
Lo *FSTOP: enter Verify mode (V). Then find STOP.
24 *QLT
26: STOP: JMP REBOOT ;RESTART CCP
24 *- Go up one line (-)
23 END QF SOQRT PROCESS, REBQQT
23 *] and enter insert mode (I)
23: JINZ CONT ;CONTINUE If NOT EQUAL
24: ;ctl-Z, and "retwun”
25: €
25: wait, I forgot the c:il-Z. now ['ve got the £ command in

26: *- my input buffer. Type the ctl-Z, go back up one line,
25: § delete the E, then end the edit

25: *KT

25: END OF SCRT PROCESS, REBOQT

25: *£ OK, we mcde the change, now re-assemble

. MAC SORT Invoke the macro assembler with SORT as input.
CP/M MACRO ASSEM 2.0
0159
0014 USE FACTOR
END OF ASSEMBLY

1l I0 SORT.HEX SORT.SYM Here we go again, [sure hope this is the

SID VERS 1.4 last time (but it probably isn't).

SYMBOLS

NEXT PC END

0169 0100 S5B7

#P.SORT,FF Set a pass point at sort, with a high count.
P.ST0P also set a pass point at STOP with count I, this
#P will stop the first time through

FF 010G .SORT
01 O0lle .stoP

G Execute the test program

FF PASS 0100 .SORT First time through SORT label:

----- A=00 B=(000 D=0000_ H=0000 S=0100 P=01C0O LXI H,013E .SW
01 PASS 0119 .STop Stopped again! Arrggh!

-Z-c~ A=00 B=006A D=00U7 H=013& $=0100 P=0119 JMP 0000 .REBQQT
*0000 .REBOOT

Hen Let's look at some values:

0008 #8 N=8, looks better than last time

#D.LIST,+=N

0160: 01 01 03 04 04 05 07 08 08 These values look a bit

#ISORT . HEX strange?! Try again:

#R

NEXT PC END

0169 0100 5587

#D.LIST,+=N-1 Machine code reloaded, display initial values:

0160: 05 03 04 0A 08 82 0A Q4

#.CONT

CONT: Let's take a look at the process of switching
Jl1C LOA O13F .1 two data items - the code appears down below
0llF MOV E,A the "CONT" label, so we'll disassemble a

0120 Mvl 0,00 ortion of the program.
0122 LxI #0160 LpsTortien of the progr

0125 ©CAD O

al2e MOV AM

0127 INX H

0128 CMP M

0129 JC 0137 .INCI
012C JZ 0127 .INCI

0lZF MOV C,M Here's where the switch occurs, let's set a pass

zEIZF,FF point here and watch the data addresses:

FE 0100 .SORT
01 0119 .S70P
FF 012F

All Information Presented Here is Proprietary to Digital Research

56

SID User”s Guide

#G

FE PASS 0100 .SORT

5 SID Sample Debugging Sessions

Here's the first pass through SORT

-Z-E- A=00 B=006A 0=0007 H=013E $=0100 P=0100 LXI H,013E .SW
FF PASS OLZF

Switching at address 161, looks OK!

----1 A=05 3=006A 0=0000 H=0161 S=0100 P=012F MOV (.M

FE PASS CQlzF Switching at 162, looks good.

----1 A=05 3=0003 D0=0001 H=0162 S=Q100 P=012F MOV (.M
FD PASS OI2F 164 (s the next to switch, looks good.
----1 A=0A B8=0004 D=0003 H=0164 S=0100 P=0l2F MOV C(C,M
FC PASS 012F 166 is probably the next one.

---E- A=82 8=0008 D=0005 H=0166 S=0100 P=012F MOV C,M
*Q130 So what's wrong? This section of
code seems to work.
#-P . Clear all the pass points, and reload
féSORT-HEX the machine code for another test.
NEXT PC END
0169 0100 5587
#L.CONT+5

0121 NOP

0122 LXI H,0160 .LIST

0125 DAD O

0126 MOV A,M Here's the code where the element

8%25‘ INé : switching occurs, let's watch the

z8 CHp rogram switch the first el t:

0129 J¢ 0137 vt o ¢ first elemen

0l2¢ Jz 0137 .INCI

012F MOV C,M

0130 MOV M,A

0131 D0CX H
#G,129
*()129 CK, here we are, ready to test and
#T10 switch, if necessary.

----1 A=05 8=000Q D=N000 H=Ql61 S=Q100 P=0129 JC 0137 .INCI
----1 A=05 B=0000 D=0000 H=0161 S=0100 P=0l2C JZ 0137 .INCI
---~1 A=05 8=0000 D=0000 HK=0161 S=0100 P=012F MOV (.M

----1 A=05 B=0003 D=0000 H=0161 S=Q100 P=0130 MOV M,A

----1 A=05 8=0003 0=0000 H=0161 5=0100 P=0131 DCX H

----1 A=05 8=0003 D=0000 H=0160 S=Q100 P=0132 MOV M,C .LIST
-~--1 A=05 8=0003 D=0000 H=0160 S=0100 P=0133 LXI H,013E .SW
----1 A=05 B=0003 D=0000 H=013£ S=0100 P=0136 INR M=01 .SW
*0137 .INCI ' : _ : -
#0.LIST 47 Well, that went nicely - elements switched, SW=I
0160: 03 05 04 DA 08 82 0A Q4
#H=1 The data look is poi
0000 REBOOT #0 e data looks good at this point.
#G, . INCI Proceed to the INCI label
*(Q137 .INCI Here we are, let's look at the data:
#D.LIST,+7
0160: 03 05 04 OA 08 82 OA 04
#H=1
2000 .REBOOT #0 Looks good, trace past the label and break
#T

————— A=05 B=0003 D=0000 H=013E S=0100 P=0137 LXIL H,013F .I
*013A
#6, . INCI Go to the INCI label again.
*0137 . INCI Here we are (again), how's the data?
#0.LIST,+=I
2%_50? 03 04 .. Looks good, proceed past INCI

---E- A=05 B8=0004 D=0001 H=013f S=0100 P=0137 LXI H,012F .1
;g%??NCI And loop again . . .
*0137 . INCI Here we are (again), how's the data?
#D.LIST, +=1

0160: 03 04 0S5 ...
#G, .SORT, .5TOP

*Q119

.5TOP

#0.LIST,+=1
0160: 01 01 03 04 04 0507 08 08

f

Looks good, this is getting monotonous, let's
go for it! Stop at either SORT or STOP

Egad! Here we at the the STOP label. Why
aren’t we making it back to SORT?

Tsk! Tsk! The data's messed up again.

All Information Presented Here is Proprietary to Digital Research

57

SID User”s Guide 5 S8ID Sample Debugging Sessions

#1SORT .HEX Let's reload and try again.
AR
NEXT PC END
0169 0100 5587
#1.136,+3

0136 IMR M Here's where the switch count is incremented
INCI:

0137 XD H,013F .I

013A
#G,136 Execute the program and break

at SW = Sw + !

*0136
#0.LIST,+=1 Look at data values:
0160: 03 .
U Use U to move past break address

----1 A=05 §8=0003 D=0000 H=013E S$=0100 P=0136 INR M=0l .SW
*0137 INCI It's actually easier to use the pass point feature
#P136 if we want to view the action of the INR M,
3G since the P command stops executfon after the

pass point is executed.
01 PASS 0136
--~-1 A=05 8=0004 D=0001 H4=013E S=0100 P=0136 INR M=02 .SW

*0137 . INCI SW = 2, looks good.
#0.LIST +=1
. 0160: 03 04 .. Data values look good.
#S N Let's change N to a smaller value so the program
0163 08 4 doesn't loop so many times: 4 i{s a good number.
0169 0A . End input with "."
#G "GO" to pass point
01 PASS 0136 Here we are, switch value is incremented:
----1 A=0A B8=0008 D=0003 H=013E S=0100 P=0136 INR M=03 .SW
*0137 .INCI Stopped at next instruction.
0. LIST,+=1
0160: 03 04 05 08 Data values so far.
#H=SW
0004 #4d SW value at this point is 4.
#TFFFF Let's watch it run for a few steps:

----- A=0A B8-0008 D=0003 H=013€ S=0100 P=0137 LXI H,0L13F .,
----- A=QA B=0008 D=0003 H=013F S=0100 P=J13A INR M=03 .]
————— A=QA B=0008 0=0003 H=013F S=0100 P=0138 JMP 0I0A .COMP

————— A=0A B=0008 D=0003 H=013F S$=0100 P=0lCA LDA 0l68 .N
————— A=04 B=0008 D=0003 H=013F $=0100 P=0100 CMP =04 .I
-Z-E1 A=04 B=0008 D=0003 H=013F $=0100 P=010€ JNZ O011C .CONT
-Z-E1 A=04 B=0008 D=0003 H=013F $=0100 P=011l LXI H,0L3E .Sh
oZ-E1 A=04 8=0008 0=0003 H=013E S=010C P=0114 MOV A,M .SW
-Z-E1 A=04 B=0008 D=0003 H=013E S$S=0100 P=0115 CRA A

————— A=04 B8=00038 D=0003 H=013E S=0100 P=0116 JNZ OQ11C .CONT

————— A=04 B=0008 D=0003 H=013E S=0100 P=011C LLA O01l3fF .1
460 Very interesting! We seem to be
Let's g%o%lgcf?%%k t&xoe ert‘BrT ar’x'afz}}:eritlﬁ%r} SORT.

ED SORT.ASM)
*FAVFORA This is a simple change: append all text, enter line

22'. *QLT verify mode, find "ORA" and make the change:

22: ORA A ;SET FLAGS

22: * "retrm to move down one line

23: JINZ CONT ;CONTINUE [F NOT EQUAL

23: *SCONT!ZSQRT!ZOLT Substitute SORT for CONT

23: JINZ SORT ;CONTINUE IF NOT EQUAL

23: * "retuwrn” to move down another line

24:

24 * "retwn" again.

25: END OF SORT PRQCESS, REBOOT

25: *€ End the edit

All Information Presented Here is Proprietary to Digital Research

58

SID User”s Guide

MAC SORT

5 SID Sample Debugging Sessions

CP/M MACRO ASSEM 2.0

0169

Call out MAC for another assembly.

001H USE FACTOR
END OF ASSEMBLY

L')AD SORT

Just for a little variation, we'll create a

FIRIT ADDRESS 0100 SORT.COM file for testing under SID.

LAST
BYTES READ

RECORDS WRIT

ADDRESS Cles

0047
TEN 01

SID SORT.COM SORT.SYM

SID VERS 1.4
SYMBGLS
NEXT PC

Back to SID, using the COM and SYM files

END

0150 0100 5587

#P.STOP
70. LISl,+
0160: 05 0

E28)

63K CP/M VERS 1.3

3 04 0A 08 32 CA 04

Set a pass point at STOP to prevent reboot
Here's the origiral data:

-1

Unmonitored GO

Oops! We didn't get control back, there must

be an nfinite loop - we can get control back by
forcing a front panel RST 7 (ir.terrupt 7),

or simply bail-out with a cold start.

SID SORT.COM SORT.SYM

SID VERS 1.4 Let's start again, but be a little more selective
SYMBOLS in setting breakpoints.

NEXT PC END

0180 Q100 55B7

#P.STOP Set a pass point at STCP, as before

4P SORT,FF and one at SORT with 4 pass count of 255.
#-G GO with pass trace disabled.

01 PASS 0100
————— A=Q01
*0103
#O.LIST, +=N-
0160: 03 .
#H=N
0000
#H=1
0000
#G

.REBOOT

.REBOOT
.. COMP

*Q10A .COMP
£75

-Z-E1 A=00
-2-€1 A=00
-Z-E1 A=Q0
*0l15 H
#G0

LIST(N-1) with LIST(N,,
at LIST(N-1).

Stopped with 255 passes through SOR

T - tog many!
B8=006A D=00FF H=013E $=0100 P=01 A

1 How's the data?

Hmmm... leoks like N was destroyed.

#0

#0
There's a good possibility that we're running off
the end of the LIST vector into the variable N,
let's stop at the COMP label and watch the end test.

0165 .N
M=00 .I
Ql1C .CONT

$=0100 P=010A LDA
$=0100 P=0100 CMP
S$=0100 P=010f JNZ
$=0100 P=0111 LXI H,0L3E .SW
$=0100 P=0114 MOV A,M .SW
work! We'll be comparing

but the last LIST element is

a quick fix.

8=006A D=0Q0FF
8=006A D=00FF
8=006A 0=00FF
82006A D=00FF H=013F
B=006A D=00FF H=013C
ey, this isn't gsing to

H=013F
H=013F
H=013F

Let's try

All Information Presented Here is Proprietary to Digital Research

59

5 S8ID Sample Debugging Sessions

@SID SCRT.COM SORT.SYM
ID VERS 1.4 Let's re-enter SID with a clean mermory

SYMBOLS

image, and look ut the machine code

NEXT PC END below the "COMP" label.
0180 0100 5587
#L.COMP
COMP:
010A LCA 0168 .N Here's the reference to N - let's change this
0100 cMp M to N-I with a "hot patch” in memory, to see
010 oNZ Olic .CONT if it works, then we'll go back to the
0111 Lxr H,013E .SW original source program and make the
~0lla MoV AM necessary changes. We're not using the area
#A10A of memory starting at 0200, so patch a jump
010A JmpP 200 over the LDA instruction, and fix-up some
0100 patch code.
#A200
0200 LQA - Replace the LDA instruction which now has JMP 200
0203 DCR A N-1 in accumulator (N better be 2 or larger!)
0204 (CMP M and compare with memory (HL addresses I),
0205 JNZ .CONT jump to CONT if continuing, otherwise
0208 gMp 111 jump back to the next instruction in sequence
0208 ; after the patch.
gPZO&,—F Set a pass point to watch the JNZ take place
fP.SIUE and catch any returns to the CCP.
#PL1L,FF Set a pass point at the patch retwn address.
- #S.N Reduce the size of N for this test to 4.
0168 08 4
0169 00 .
#G

FF PASS 0205

---E1 A=03 8=0000
FE PASS 0205

—--~1 A=03 3=0003
FD PASS 6205

--—=1 A=03 B=0004
FC PASS 0205

-7-E1 A=03 3=0004
FF PASS 0111

~Z-E1 \=03 £=0004
FB PASS 0205

---E1 A-03 B=0004
FA PASS 0205

———~1 A=03 8=0004
F9 PASS 0205

--—=1 A=03 B=0004
F8 PASS 0205

-Z-E1 A=03 B=0004
FE PASS 0111

-Z-E1 A=03 B=0004
*0114
#0.LIST,+=N-1

0160: 03 04 05 GA .

-UFFFF
-1-E1 A=03 8=0004
*0138
#H=N
0004 #4
#H=1
0002 #2

All Information Presented Here is Proprietary to Digital

Everything is ready, let's go...

First pass through the patch code:
0 :0000 H=013F S=0100 P=0205 JNZ Ol1C .CONT
Went to CONT that time, second pass:
D=0000 H=013F S=0100 P=0205 JINZ OLIC .CONT
Went to CONT again, next pass:

D=0001 H=013F S=0100 P=0205 JNZ O011C .CONT
And so-forth:

D=0002 H=013F S=0100 P=0205 JNZ O11C .CuuT
Must be tne end of one cycle:

D=0002 H=013F S=0100 P=0111 LXT1 H,O0l3E .SW
Now back through the patch code:

0=0002 H=013F S=0100 P=0205 JNZ O0l1C .CONT

0=0000 H=013F S$=0100 P=0205 JNZ O011C .CONT

D=0001 H=013F 5=0100 P=020% JNZ 011C .CONT

0=0002 H=013F S$S=0100 P=0205 JINZ OllC .CONT

0=0002 H=013F S$=0100 P=011l LXI H,013E .SW

This i{s getting monontonous again, so
push the "return" key to stop the action.
""" Data looks good, run in monitored mode:

0=0002 H=013E S=0100 P=01l4 MOV A.M
Push the “return key to abort early.
Value of N (s still 4 (that's nice!)

Value of I is currently 2. This program
should have stopped, but didn’t for some
reason.

Research

60

SID User”s Guide 5 SID Sample Debugging Sessions

SID SORT.COM SORT.SYM

SID VERS 1.4 Let's try another approacih. Suppose we
;E??OLEC £ND RPOTBHEALG TESHY BTGk fOSRy el set
0180 0100 5587 LIST(0) = 0, LIST(I) = 1

#S.N

0168 08 2

0169 GO .

3#S.LIST

0160 05 0

0161 03 1

0162 04

p STQP Things are ready to go, run completely traced:

4TFFFF
----- A=00 8=0000 D=0000 H=0000 $=0100 P=0100 LXI H,013E .SW
----- A=00 B=0000 D=0090 H=013€ $=0100 P=0103 MVI M,01 .SW
----- A=00 8=0000 D=0000 H=013f $=0100 P=0105 LXI H,013F .I
----- A=00 B=0000 D=0000 H=013F $=0100 P=0108 MVI M,00 .I

————— A=00 B=0000 0=0000 4=013F S=0100 P=010A LDA 0168 .N
————— A=02 B=0000 0=0000 H=013F S=0100 P=010D CMP M=00 .I
----1 A=02 B=0000 D=0000 H=013F S=0100 P=010E JNZ OLl1C .CONT

B=0000 D=0000 H=013F S=0100 P=011C LDA QIl3F .I
B=0000 D0=0000C H=013F S=0100 P=011F MOV E£,A

8=0000 D=0000 H=013F S=0100 P=0120 MVI D,00

B=0000 D=0000 H=013F S=0100 P=0122 LXI H,0160 .LIST
B=0000 0=0C00 H=0160 S=0100 P=0125 DAD D

B=0000 D=0000 H=0160 S=0100 P=0126 MOV A,M .LIST
B8=0000 0=0000 H=0160 S=0100 P=0127 INX H

B8=0000 0=0000 H=0161 S=01Q0 P=0128 CMP M=
B8=00C0 D=0000 H=0l61 S=0100 P=0129 JC 01
NCIL: Not switched!

C-ME- A=00 8=0000 D=0000 H=016l S=0100 ©=0137 LXI H,013F .I
C-ME- A=00 B=0000 D=0000 H=013F S=G100 P=013A INR M=00 .I
C---- A=00 8=0000 D=0C00 H=013F S=N100 P=0138 JMP QI10QA .COMP

o

i

!

1

1

—
XXy s X X X 2> D> D
T T
loNeoloNoNoRoleNeNe]
OO0 OOOMN

0 B: 3000 D=0000 H=013F S=0100 P=010A LDA 0168 .N
2 B=0000 0=000C H=013F S=0100 P=0100 CMP M=01 .I
2 8=0000 0=0000 H=013F S$=0100 P=0'0E JNZ OQl1C .CONT

8=0000 D=0000 H=013F $=0100 P=011C LDA O13F .I

B=0000 D=0000 H=013F S=0100 P=011F MOV E,A

8=0000 0=0001 H=013F S=0100 P=0120 MVI 0,00

8=0000 0=0001 H=013F $=0100 P=0122 LXI H,0160 .LIST

B=0000 D=0001 H=016C S$S=0100 P=0125 DAD D

B=0000 D=0001 H=0161 S=0100 P=0126 MOY A

8=0000 0=0001 H=0161 S=0100 P=0127 INX H
M
0

I i
OO OOOOO0OO
= e b N

8=0000 D=0001 H=0162 S=0100 P=0128 CMP
B=0000 D=0001 H=0162 S=0100 P=0129 JC
INCI: Not switched (again)!

C-M-- A=01 B=0000:u-,001 H=0162 $=0100 P=0137 LXI H,0L3F .1
C-M-- A=01 B=0000 0=0001 H=013F $=0100 P=013A INR M=0l .I
=01 B8=0000 0=00Q1 H=013F $=0100 P=0138 JMP OlO0A .COMP

]
(
1
i
—
Trrr>>>bD>> I

C---- A=01 8=0000 D=0001 H=013F S=0100 P=010A LDA 0168 .N
C---- A=02 B=0000 0=0C01 H=013F S$=0100 P=010D CMP M=02 .I
-Z-E1 A=02 B=0000 0=0001 H=013F S=0100 P=010E JINZ OLIC .CONT
-Z-E1 A=02 B=0000 D=0001 H=013F S$=0100 P=CQL11l LXI H,0l3E .SW
-Z-E1 £=02 B8=0000 D=0Q01 H=0l3& S=0100 P=0114 MOV A /M .SW
-Z-£] A=01 B=0000 D=0001 H=013€ $=0100 P=0115 ORA A

————— A=01 8=0000 D=0001 H=013E S$S=0100 P=0116 JNZ 0100 .SORT
SORT: No items were switched - SW not set to 0!

————— A=01 8=0000 D=0001 H=013E $=0100 P=0100 LXI H,013E .SW

All Information Presented Here is Proprietary to Digital Research

61

SID User”s Guide 5 SID Sample Debugging Sessions

ED SORT.ASM
*FAVFSORT: 1Z0LT Back to the editor- change the
8: SORT: LXI H,SW entry code (o initialize SW
8: *-
7o
7. *2
9: MVI M, 1 ;SW = 1
9. *2511201Z0LT
9: MVI M,0 ;SW =0
9: *-
8: SORT: LXI H,SW
8: *I[
3: MV Al
19: STA SW ;SW o= 1 FIRST TIME THRU
0:
0 *E
W\C SCRT
P/M MACRO ASSEM 2.0
0lsE Re-~assemble, again

Q0LH USE FACTOR
END OF ASSEMBLY

510 SORT.HEX SORT.SYM

SI0 VERS 1.4 Wwe've [lxed the SW oinitiglization problem, which
SYMBOLS should nalt the program at the proper time, but
MEXT PC £END we may stitl have a problem with the end of
- 016 0100 5587 LIST test (remember that "hat patch'?).

4D.LIST,+=N Here's the initial data:
0165: 05 03 04 OA 08 82 DA 04 08
#6,.S7T0P '

GO, unmonitored to the STOP (how's that for
*QL1E .STQP confidence?).
#0.LIST, +=N We mace it, here's the data:
0165: 03 04 94 05 08 08 OA 0A 0B 78 82
J170: &5 . Data (s sorted in ascending crder, but there's too
#ISORT HEX much of it! We stil have the problem that N is
iR altered during execution.
ggég 0;80 5287 Let's reload and make sure we know what the
#P.SORT PP point at SORT, check N
#G

01 PASS (105 .SQRT Here's the first pass through SORT:

-Z-£- A=01 B=0004 D=000A H=0143 S=0100 P=0105 LXI H,0143 .SW
;3338 Break at 0108, check value of N:

b =1
0008 #8

¥ OK initially, continue the execution with G.

01 PASS 0105 .SORT We have passed through the data once:
————— A=75 B=002A 0=007A H=0143 S=0100 P=0105 LXI H,0143 .SW

*0108

#H N

0078 #123 *.! N has been altered, which we expected, since we
#ISORT . HEX are testing LIST(N-1) against LIST(N) and performing
#R a switch if unordered.

NEXT PC END

016E Q100 5587 Let's reload and scope in on the problem:

#G, . INCI Stop at the point where [becomes [+ I:

01l PASS Q105 .SQRT Oops! T he initial pass point is still set.
----- A=01 8=002A D=007A H=0143 S=0100 P=0105 LXI H,0l43 .SW

;0;08 Clear all pass points.

#G, . INCI Now, try again:

*Q13C . INCI Stopped at first entry co INCI, check value of N:
#H=N N is still 8, looks good.

0008 #8

#G, .CONT Co to the CONT label, then stop at INCI.

*0121 .CONT

4G, . INCI

All Information Presented Here is Proprietary to Digital Research

62

SID User”s Guide 5 SID Sample Debugaging Sessions

*Q13C .INCI Back at INCI now. Check value of N

H=N

0008 #8 Remains at 3. If we keep this up, we'll be typing

#P_INCI,6 break addresses all day. We can run the next few passes

4.G through INCI automatically by setting a pass count (use 6
in this case), then run with -G to disable intermediate

01 PASS 013C traces. We now stop 6 iterations later:

---£- A=82 B8=0004 D=0006 H=01435=0100 P=013C LXI H,0144

*013F

#H=xN Check N: remains at 8, then

0008 #8 check [to compare passes: [=0,1,2,3,4,5,6 has been

FH=1 executed. We are now about to set I =7 byt the test

0006 #6 at COMP is "JNZ" which allows execution one too manyv

times (which we already know about).

@ ED SORT.ASM

*FAY Back to the editor, change the end of LIST test
1: *FLDA - to compare I with N-I rather than N.
17: *OLT
17: LDA N ;LENGTH OF VECTOR
17: * "return’ to go to next line
18: CMP M ;CHECK FOR N=I
18: *1 Insert the instruction before the "CMP" opcode.
18: DCR A ;N-1 IN A REGISTER
19: (NOTE THAT N MUST BE 2 OR LARGER)
. 20: ctl-Z

20: *F*1 Now a little clean-up work - there is a typo in
49: *0T a comment line at address 0I2A in the listing:
49: MOV M, A (NEW LIST*[*-C-DI{!ZOLT
49: MOV M, A ‘NEW LIST(I+1) TO M Looks better now.
49: *F32 ; rid of it
g4 *OLT We are not using the 8080 stack, so get rid of it
64: N 32 ;16 LEVEL STACK
64: *2KY
64:
64: *t Complete the edit.

@MAC SORT

P/M MACRQ ASSEM 2.0
0l4F Re-assemble the source program.

001H USE FACTOR
END OF ASSEMBLY

SID SORT.HEX SORT.SYM
I

D VERS 1.4 Back to SID - this sh '
SYMBOLS ac o this should be the last time!
NEXT PC END
014F 0100 558F .
#0.LIST,+=N Initial data:
0146: 05 03 04 OA 08 82 0A 04 08
#G,STOP
? : Ok, ok. Let's try it with an "address reference” to
#G,.ST0P the label STOP:
*Q11F .STOP That's better, now look at the data:
#0.LIST,+=N hooray! It's finally sorted.
0146: 03 04 04 05 08 DA 0A 8208
#H=N .
0008 #8 Is N ok? Yes, it's still 8.
46O Hold it! The data s in ascending order, but it is

supposed to be in descending order! This will
be an easy fix.

All Information Presented Here is Proprietary to Digital Research

63

SID User”s Guide

@ED SORT.ASM

T

5 SID Sample Debugging Sessions

*T

; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE
* .

; ELEMENTS OF 'LIST' ARE PLACED INTO

*

; DESCENDING ORDER USING BUSBLE SORT
*SDESIZASCIZ0LT

; ASCCENDING ORDER USING BUSBLE SORT
*SCCHZCIZOLT

; ASCENDING ORDER USING BUIBLE SORT

*E

WAC SORT 3+3

CP/M MACRO ASSEM 2.0
014rf

GOIH USE FACTOR

END OF ASSEMBLY

Re-assemble

At this point,
particular set of data items.
debugged. There
included).

We riow have a program which appears
it is considered a production program.

All Information Presented Here is

64

Toox care of that problem.

with the symbol table option.

we have checked-out this particular SORT program using this
This does not, of course, mean that the program 1is fully
could be cases which ae not
inciuded all boundary conditions (the data (tems 00 and #F, for example, shouid be

tested properly since we have nnt

Further, there are program segments which could be incorrect, but which
have no negative effects on the program.
before the label SORT, for example, does not affect the program. but is superf!

The initiclization of SW to the vaiue |

to work. but must undergo jurther tests before

Proprietary to Digital Research

