
SIDTM

Symbolic Instruction Debugger
User's Guide

Copyright © 1978 and 1981

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360-5001

All Rights Reserved

COPYRIGHT

Copyright © 1978 and 1981 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permis s ion of Dig i tal Re search, Post Of f ic e Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the ccntents hereof and
specifically difoclaims any implied warranti.es of
merchantabilitj or fitness for any particular
purpose. Fu rther, Dig ita 1 Re search rese rves thE:..
right to revise this publication and ~~ ma:·-.~ changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
ASM, DDT, MAC and SID are trademarks of Dig ital
Research. Intel is a registered trademark of Intel
Corporation.

The "SID User's Guide"
Digital Research TEX Text
the United States of
press/Monterey.

wa s prepared us ing the
Formatter and printed in
America by Commercial

I

L

* Fourth Printing: January 1982 *

Foreword

;:::=" -:.'! the CP/M ® symbolic debugger, expands upon the features
-, .. C:2/:·1 standard debugger described in the "CP/M Dynamic
::al~a Tool (DDT) User's Guide" and provides greatly enhanced

., _i~12S for assembly level program checkout. Specifically, SID
: _·.lC~S real-time breakpoints, fully monitored execution, symbolic

. ';5·~rr')l'l, assembly, and memory display' and fill functions •

. :2C, 310 operates with "utilities" that can be dynamically
c. ;ith SID to provide traceback and histogram facilities.

Sec tion 1 of this manual desc r ibes the command forms tha t
lnitiate SID and the command lines that direct the actions of the
SID program. Section 2 describes SID's ability to reference

.::2 machine addresses through symbolic expressions. Section 3
;c~oes the commands that direct the debugging p£ocess. The SID

-:.~~.~2.3, described in Section 4, provide additional debugging
.;:~::les.. Section 5 contains several examples of SID debugging

. ..'; :0:1 s.

iii

3 SID COIllCiands

2 SID Symbo1ic Expressions

2.1 Literal Hexadecimal Numbers. • • • • • • . . • . •. 9

2.2 Literal Decimal Numbers. • . • • • . • . • . • • •• 9

2.3 Literal Character Values . • . • • • • . • . • . . . 10

2.4 Symbolic References . • . . • • • •• 11

2.5 Qualified Symbols. •...•.•• • . . • • . • 11

2.6 Symbolic Operators • • • . • • . 12

2.7 Sample Symbolic, Express ions . . • • • 13

v

1

5

3.1 The Assemble (A) Command • • . • • . • . • . • . .• 15

3.2 The Call (C) Command • • . •• • • . • • 17

3.3 The Display Memory (D) Command • . • • .• ..• 17

3.4 The Fill Memory (F) Command. • . • . •• 20

3.5 The Go (G) Command . • • . . . • . . • . • . . . •. 20

3.6 The Hexadecimal Value (H) Command. • . • • • • . •. 22

3.7 The Input Line (I) Command • . • • •. • • . 23

3.8 The List Code (L) Command. . • . . •.• 27

3.9 The Move Memory (M) Command. • . . . •• 28

3.10 The Pass Counte r (P) Command• ... 28

3.11 The Read Code/Symbols (R) Command . • • • • 31

3.12 The Set Memory (S) Command • • • • . . .• • •. 35

3.13 The Trace Mode (T) Command . • . • • • . . • 36

Table of Contents

SID Operation Under CP/M

1.1 Starting SID •.•

1.2 SID Command Input.

1

5 SIn Sample Debugging Sessions

3.14 The Untrace Mode (U) Command

3.15 The Examine CPU State (X) Command

Table of Contents

(continued)

51

43

44

46

39

40

.

.
SIn Utilities

4.1 Utility Operation.

4.2 The HIST Utility ..•

4.3 The TRACE Utility.

4

I

vi

BDOS

1

CCP

TPA

JMP BDOS(Low Memory)

(a) SID
(b) SID x.y
(c) SID x.HEX
(d) SID x.UTL
(e) SID x.y U.v
(f) SID * U.v

(High Memory)

Section 1
SID Operation Under CP/M

Figure 1-1. Memory Configuration Before SIn Loads

Type one of the following commands to start the SID program.

All Information Presented Here is Proprietary to Digital Research

In each case, SID loads into the Transient program Area (TPA) and
relocates itself to the top of the TPA, overlaying the Console
Command Processor portion of CP/M. Figure 1-1 shows memory
organization before SID is loaded while Figure 1-2 shows the memory
configuration after SID is loaded and relocated. Due to the
relocation process, SID is independent of the exact memor size that
CP/M manages in a particular computer configuration.

1.1 Starting SIn

SID User"s Guide

BDOS

SID

JMP BDOS

TPA

JMP SID

1.1 Starting SID

Figure 1-2. Memory Configuration After SID Loads

After loading and relocating, SID alters the BDOS entry address
to reflect the reduced memory size, as shown in Figure 1-2, and
frees the lower portion of the TPA tor use by the program under
test. Note that although SID occupies only 6K of upper memory when
operating, the self-relocation process necessitates a minimum 20K
CP/M system for initial setup, leaving about 10K for the test
program.

Corranand form (a) above loads and executes SID without loading a
test program into the TPA. Use this form to examine memory cr write
and test simple programs using the built-in assembly features of
SID.

Form (b) above is similar to (a) except that the file given by
x.y is automatically loaded for subsequent test. Note that although
x.y is loaded into the TPA, it is not executed until SID passes
program control to the program under test using one of the following
commands: C (Call), G (Go), T (Trace), or U (Un trace). It is your
responsibility to ensure that there is enough space in the TPA to
hold the test program as well as the debugger. If the program x.y
does not exist on the diskette or cannot be loaded, SID issues the
standard "?" error response. If no load error occurs, SID responds
as follows:

NEXT
nnnn

PC
pppp

END
eeee

where nnnn, pppp, and eeee are hexadecimal values that indicate the
next free address following the loaded program, the initial value of
the program counter, and the logical end of the TPA, respectively.
Thus, nnnn is normally the beginning of the data area of the program
under test; pppp is the starting program counter (set to the
beginning of· the TPA), and eeee is the last memory location
available to' the test program, as shown in Figure 1-3. Al though x. y
usually contains machine code, the operator can name an ASCII file,
in which case these program addresses are less meaningful.

All Information Presented Here is proprietary to Digital Research

2

SID User"'s Guide

eeee:

nnnn:

pppp:

BDOS

SID
JMP BDOS

(Free Space)

(Test
program)

JMP SID

1.1 Starting SID

Figure 1-3. Memory Configuration After Test program Load

Command form (c) is simi la r to form (b) except that the .test
program is assu.ned to be in Intel "hex" format, as directly produced
by ASM or MAC. In this case, the initial value of the prosram
counter is obtained from the terminating record of the hex file
unless this value is zero, in which case the prog~am counter is set
to the beginning of the TPA. Asi...ile L ~.Y1 and MAC manuals discuss,
the program counter value can be given on the "END" statement in the
source program. Again, it is your responsibility to ensure that the
hex records do not overlay portions of the SID debugger or CP/M
Operating System. If the hex file does not exi3t or if errors occur
in the hex forma t, SID issues the "?" response. Otherw ise, the
pr inciple program locations shown in the previous paragraph are
listed at the console.

Use command form (d) when a SID utility function is to be
included. In this case, SID is first loaded and relocated as above.
The utility function is then loaded into the TPA. Utility functions
are also self-relocating and immediately move to the top of the TPA,
placing themselves directly below the SID program. The BDOS entry
address is changed to reflect the reduced TPA, as shown in Figure 1­
4. Generally, the utility program prints sign-on information and
mayor may not prompt for input from the console. Exact details of
utility operation are given in Section 4, "SID utilities."

All Information Presented Here is Proprietary to Digital Research

3

SID User"'s Guide

BOOS

SID

UTL
JMP BOOS

TPA

JMP UTL

1.1 Starting SID

Figure 1-4. Memory Configuration Following utility Load

Command form (e) is similar to (c), except that the symbol
table g1ven by u.v is loaded with the program x.y. Symbol
information is loaded from the current top of the TPA downward
toward the program under test, as shown in Figure 1-5.

BOOS

SID

(UTL If
Present)

SYMBOLS

JMP BOOS

Free Space

Test Program

JMP SYMBOLS

Figure 1-5. Memory Configuration Following Symbol Load

The symbol table is in the format produced by the CP/M Macro
Assembler. In particular, the symbol table must be a sequence of
address and symbol name pairs, where the address consists of four
hexadecimal digits, separated by a space from the symbol that takes
on this address value. The symbol consists of up to 15 graphic
ASCII characters terminated by one or more tabs (II) or a carriage-

All Information Presented Here is proprietary to Digital Research

4

I!
r

SID User"'s Guide 1.1 Starting SID

return line-feed sequence. Note that you can create or alter a
symbol table using the CP/M editor, as long as this forma t is
followed.

The response following program load is as shown in command form
(b) above, giving essential program locations. When SID begins
symbol load, it displays the following message:

SYMBOLS

This message indicates that any subsequent error is due to the
symbol load process. In particular, the "?" error following the
SYMBOLS response is due to a non-existent or incorrectly formatted
symbol file.

Command form (f) is similar to (e), except that no program is
loaded with the symbol file u.v.

Examples of typical commands that start the SID p~ogram are
shown below.

(a) SID
(b) SID DUMP.COM
(b) SID DUMP.ASM
(c) SID SAMPLE.HEX
(c) SID DUMP.HEX
(d) SID TRACE.UTL
(d) SID HIST.UTL
(~) SID DUMP.COM DUMP.SYM
(e) SID DUMP.HEX DUMP.SYM
(e) SID TEST.COM TEST.ZOT
(f) SI:j * DUMP .SYM

1.2 SID Command Input

Command input to SID consists of a ser ie s of "command lines"
that direct the actions of the SID program. These commands allow
display of memory and CPU registers, and direct the execution and
breakpoint operations during test program debugging.

When SID is ready to accept the next command, it displays a "#"
at the console. Each command is based upon a single letter,
followed by optional parameters, and terminated by a carr iage
return. Note that all standard line editing features of CP/M are
available, with a maximum of 64 command characters. The following
table lists the CP/M line editing functions.

All Information Presented Here is proprietary to Digital Research

5

SID User's Guide 1.2 SID Command Input

Table 1-1. CP/M Line Editing Controls

Control Function
Character

Tc

T~

TH

Tp

TR

Ts

Tu

Tx

rubout

CP/M system reboot, return to CCP

Physical end-of-line

Delete last character and backspace
cursor
Print console output (on/off toggle)

Retype current input line

Stop/start console output

Delete current input line

(Same as TU)

Delete and echo last character

The T character indicates that you must simultaneously hold down the
control key while depressing the particular function key. Note tha~

the TR, TU, and Tx keys cause CP/M to type a "~" at the end of the
line to indicate that the line is being discarded.

Various SID commands produce long typeouts at the console (see
the "D" command which displays memory, for example). In this case,
you can abort the typeout before it completes by typing any key at
the console (a "return" suffices).

The single letter commands that direct the actions of SID are
typed at the beginning of the command line. You can enter commands
in upper- or lower-case. Table 1-2 summarizes the valid commands.

All Information Presented Here is Proprietary to Digital Research

6

SID User"'s Guide 1.2 SID Command Input

Table 1-2. Command Letters

Letter I Meaning

A Assemble directly to memory
C Call to memory location from SID
D Display'memory in hex and ASCII
F Fill memory with constant value
G Go to test program for execution
H Hexadecimal arithmetic
I Input CCP command line
L List 8080 mnemonic instructions
M Move memory block
P Pass point set, reset, and display
R Read test program and symbol table
S Set memory to data values
T Trace test program execution
U Untrace (monitor) test program
X Examine state of CPU registers

Although the details of each of the commands are given in later
sections, nearly all of the commands accept parameters following the
letter that governs the command actions. The parameters can be
counters or memory addresses, and can appear Ln both literal and
symbolic form, but eventually reduce to values in the range 0-65535
(four hexadecimal digits) .

As an example, the "display memory" command can take the
following form:

Dssss,eeee

where D is the command letter, and ssss and eeee are "command
parameters" that give the starting and ending addresses for the
display, respectively. In their simplest form, ssss and eeee can be
literal hexadecimal values, as shown below.

DIOO ,300

These values instruct SID to print the hexadecimal and ASCII values
contained in memory locations OlOOH through 0300H.

Although you can usually refer to program listings to obtain
absolute machine addresses, SID supports more comprehensive
mechanisms for quick access to machine addresses through program
symbols. I n part icula r, the command parame te r s can cons is t of
"symbolic expressions" which ire described fully in the following
section.

All Information Presented Here is Proprietary to Digital Research

7

Section 2
SID Symbolic Expressions

An important facility of SID is the ability to reference
absolute machine addresses through symbolic expressions. Symbolic
expressions can involve names obtained from the program under test
tha t are included in the "SYM" file produced by the CP/M Hacro
Assembler. Symbolic expressions can also consist of literal values
in hexadecimal, decimal, or ASCII character string form. These
values can then be combined with various operators to provide access
to subscripted and indirectly addressed data or program areas. This
section describes symbolic expressions so that you can incorporate
them as command parameters in the individual command forms that
follow this section.

2.1 Literal Hexadecimal Numbers

SID normally accepts and displays values in hexadecimal. The
valid hexadecimal digits consist of the-deci~al digits 0 through 9
along with the hexadecimal digits A, B, C, D, E, and F,
corresponding to the decima 1 values 10 through 15, respectively.

A literal hexadecimal number in SID consists of one or more
contiguous hexadecimal digits. If you type four digits, then the
leftmost digit is most significant, while the r.i.gbLllost digit is
least significant. If the numb~r contains more than four digits,
the rightmost four are taken as significant, and the remaining
leftmost dig its are discarded. The examples below Sf ow the
corresponding hexadecimal and decimal values for the giveD input
values.

INPUT VALUE

1
100

fffe
10000
38001

HEXADECIMAL

0001
0100
FFFE
0000
8001

DECIMAL

1
256

65534
o

32769

2.2 Literal Decimal Numbers

Although SID"'s normal number base is hexadecimal, you can
overr ide this base on input by preceding the number with a "i"
symbol, which indicates that the following number is in the decimal
base. In this case, the number that follows must consist of one or
more decimal digits (0 through 9) with the most significant digit on
the left and the least significant digit on the right. Decimal
values are padded or truncated accord ing to the rule s of hexadec imal
nUmbers, as described above, by converting the decimal number to the
equivalent hexadecimal value.

All Information Presented Here is proprietary to Digital Research

9

SID User"'s Guide 2.2 Literal Decimal Numbers

The input values shown to the left below produce the internal
hexadecimal values shown to the right below:

INPUT VALUE

#9
10

256
655 35
65545

2.3 Literal Character Values

HEXADECIMAL VALUE

0009
OOOA
0100
FFFF
0009

As an operator convenience, SID also accepts one or more
graphic ASCII characters enclosed in str in3 e.postrophes ("') as
literal values in expressions. Characters remain as typed within
the paired apostrophes (i.e., no case translation occurs) with the
leftmost character treated as the most significant, and the
rightmost -character treated as least significant. Similar to
hexadecimal numbers, character strings of length one are padded on
the left with zero, while strings of length greater than two are
trunca~.ed to the rightmost two characters, discarding t.he leftmost
remai~ing characters.

Note that the enclosing apostrophc3 are not included in the
character str L'1g, nor are ti.2y h:cluded in the character count, with
one exception. To include the possibility of writing strings that
include apostrophes, a pair of contiguous apostrophes is reduced to
a single apostrophe and included in the string as a normal graphic
character.

The strings shown to the left below produce the hexadecimal
values shown to the right below. (For these examples, note that
upper-case ASCII alphabetics begin at the encoded hexadecimal value
41, lower-case alphabetics begin at 61, a space is hexadecimal 20,
and an apostrophe is encoded as hexadecimal 27).

INPUT STRING HEXADECIMAL VALUE

"'A'" 0041
"'AB'" 4142

"'ABC'" 4243... a A'" 6141
"'~.,. 0027

,"'"" 2727... A'" 2041
"'A ... 4120

All Information Presented Here is Proprietary to Digital Research

10

SID User's Guide

2.4 Symbolic References

2.4 Symbolic References

Given that a symbol table is present during a SID debugging
session, you can reference values associated with symbols through
the following three forms of a symbol reference:

(a) • s
(b) @s
(c) =s

where s represents a sequence of one to fifteen characters that
match a symbol in the table.

Form (a) produces the address value (i.. e. , ·the value assoc ia ted
with the symbol in the table) corresponding to the symbol s. Form
(b) produces the l6-bit "word" value contained in the two memory
loca tions given by • s, while form (c) results in the 8-b it "byte"
value at .s in memory. Suppose, for example, that the input symbol
table contains two symbols, and appears as follows:

0100 GAMMA 0102 DELTA

Further, suppose that memory starting at-OIOO f""'ntains the following
byte data values:

0100: 02
0101: 3E
0102: 4D
:):03~ '22

Based upon this symbol table and these memory values, the
symbol references shown to the left below produce the hexadecimal
values shown to the right below. Recall that l6-bit 8080 memory
values are stored with the least significant byte first, and thus
the word values at 0100 and 0102 are 3E02 and 224D, respectively.

SYMBOL REFERENCE

• GAMMA
• DELTA
@GAMMA
@DELTA
=GAMMA
=DELTA

2.5 Qualified Symbols

HEXADECIMAL VALUE

0100
0102
3E02
224D
0002
004D

Note that duplicate symbols can occur in the symbol table due
to separately assembled or compiled modules that independently use
the same name for differing subroutines or data areas. Further,
block structured languages, such as PL/M, allow nested name
definitions that are identical, but non-conflicting. Thus, SID
allows reference to "qualified symbols" that take the form:

All Information Presented Here is proprietary to Digital Research

11
~--------------------------------

[
i

SID User"'s Guide

Sl/S2/ • • • /Sn

2.5 Qualified Symbols

where Sl through Sn represent symbols that are present in the table
during a particular session.

SID always searches the symbol table from the first to last
symbol, in the order the symbols appear in the symbol file. For a
qualified symbol, SID begins by matching the first Sl symbol, then
scans for a match with symbol S2, continuing until symbol Sn is
matched. If this search and match procedure is not successful, SID
prints the n?n response to the console. Suppose, for example, that
the symbol table appears as follows:

0100 A 0300 B 0200 A 3EOO C 20FO A 0102 A

in the symbol file, with memory initialized as shown in the previous
section. The unqualified and qualified symbol references shown to
the left below produce the hexadecimal values shown to the right
below.

SYMBOL REFERENCE

.A
@A

.A/A
.C/A/A
=C/A/A
@B/A/A

2.6 Symbolic Operators

HEXADECIMAL VALUE

0100
3E02
0200
0102
004D
20FO

Literal numbers, str ings, and symbol references can be combined
into symbol ic expre ss ions us ing unary and binary n+n and n_n
operators. The entire sequence of numbers, symbols, and operators
must be written without embedded blanks. Further, the sequence is
evaluated from left to right" producing a four digit hexadecimal
value at each step in the evaluation. Overflow and underflow are
both ignored as the evaluation proceeds. The final value becomes
the command parameter, whose interpretation depends upon the
particular command letter that precedes it.

When placed between two operands, the n+n indicates addition of
the sec~nd operand to the previously accumulated value. The sum
becomes the new accumulated value to this point in the evaluation.
If the expression begins with a unary n+n, then the immediately
preceding (completed) symbolic expression is taken as the initial
accumulated value (zero is assumed at SID startup). For example,
the command:

DFEOO+#128,+5

contains the first expression "FEOO+#128" which adds FEOO and

All Information Presented Here is Proprietary to Digital Research

12

SID User"'s Guide 2.6 Symbolic Operators

(decimal) 128 to produce FE80 as the starting value for this display
command. The second expression "+5" begins with a unary "+" which
indicates that the previous expression value (FE80) is to be used as
the base for this symbolic expression, producing the value FE85 for
the end of the display operation. Thus, the command given above is
equivalent to:

DFE80,FE85

The "_" symbol causes SID to subtract the literal number or
symbol reference from the 16-bit value accumulated thus far in the
symbolic expression. If the expression b~gins with a minus sign,
then the initial accumulated value is taken as zero. That is,

-x is computed as O-x

where x is any valid symbolic expression.
following command:

DFFOO-200,-#512

is equivalent to the simple command:

DFDOO ,FEOO

For example, the

A spec ial up-a rrow opera tor, denoted by II All, denob. s the top­
of-stack in the program under test. In general, a sequence of n up­
arrow operators extracts the nth stacked item in the test program,
but does not change the test program stack content or stack pointer.
This particular operator is used most often in conjunction with the
G (Go) command to set a breakpoint at a return from a subroutine
during test, and is described fully under the G command.

2.7 Sample Symbolic Expressions

The formula tion of SID symbolic express ions is most often
closely related to the program structures in the program under test.
Suppose you want to debug a sorting program that contains the data
items listed below:

LIST:

N:

name s the base of a table of byte values to
sort, assuming there are no more than 255
elements, denoted by LIST(O), LIST(l), ,
LIST(254).

is a byte var iable which gives the actual
number of items in LIST, where the value of N
is less than 256. The items to sort are stored
in LIST(O) through LIST(N-l).

All Information Presented Here is Proprietary to Digital Research

13

SID User's Guide 2.7 Sample Symbolic Expressions

I: is the byte subscript which indicates the next
item to compare in the sorting process. That
is, LIST(I) is the next item to place in
sequence, where lis in the range 0 through N­
1.

Given these data areas, the command

D.LIST,+#254

displays the entire area reserved for sorting:

LIST(O), LIST(I), ••. , LIST(254)

The command

D.LIST,+=I

displays the LIST vector up to and including the next item to sort:

LIST(O), LIST(l), ••• , LIST(I)

The command

D.LIST+=I,+O

displays only LIST(I). Finally, the command .

D.LIST,+=N-I

displays only the area of LIST that holds active items to sort:

LIST(O), LIST(I), • . . , LIST(N-I)

The exac t manner in which SID uses symbol ic expressions
depends upon the individual command that you issue. The following
section details these commands.

All Information Presented Here is proprietary to Digital Research

14

Section 3
SID Commands

En ter SID commands at the console following the ":It" prompt.
The commands direct the debugging process by allowing alteration and
display of CPU registers and memory as well as the controlling
execution of the program under test.

The following sections describe the commands that SID accepts.

3.1 The Assemble (A) Command

(a) As
(b) A
(c) -A

The A corranand allows you to insert 8080 machine t:::ode and
operands into the current memory image using standard Intel
mnemonics, along with symbolic references to operands. The A
corranand tak~s the forms:

begin assembly at 0100
load A with hex 10
decrement A register
loop until zero
return to debugger
single carriage return

AIOO
0100 MVI A,lO
0102 DCR A
0103 JNZ 102
0106 RST 7
0107

where s represents any valid symbolic expression. Form (a) begins
inline assembly at the address given by s, where ~ach successive
addr~ss is displayed until you type ~ w~11 line (i.e., a single
car r 1ag e r etu rn) • Form (b) is equivalent to (a), except the
starting dddress for the assembly is taken from the la.st assembled,
listed, or traced address (see the "L", "T", and "U" commands). The
following corranand sequence, for example, assemb19s a short program
into the Transient Program Area (note that you must terminate each
corranand line with a carriage return):

As each successive address is prompted, you can either enter a
mnemonic instruction or return to SID command mode by entering a
single carriage return (a single "." is also accepted to terminate
inline assembly to be consistent with the "S" command).

Delimiter characters that are acceptable between mnemonic and
operand fields include space or tab sequences.

Invalid mnemonics or ill-formed operand fields produce "?"
errors. In this case, control returns back to command mode, where
you can proceed with another command line, or simply return to
assembly mode by typing a single "A", since the assumed starting

All Information Presented Here is Proprietary to Digital Research

15

SID User~s Guide 3.1 The Assemble (A) Command

address is automatically taken from the last assembled address.

The assembler/disassembler portion of SID is a separate module,
and can be removed to increase the available debugging space. Thus,
form (c) is entered to remove the module, returning approximately 1
1/2 K bytes. Since the entire SID debugger requires approximately 6
K bytes, this reduces SID requirements to ab'but 4 1/2 K bytes. When
the assembler/disassembler module is removed in this manner, the A
and L commands are effectively removed. Further, the trace and
untrace functions display only the hexadecimal codes, and the
traceback utili ty displays only hexadec imal addresse s. Any ex is ting
symbol information is also discarded at this point, although such
information can be reloaded (see the "I" and "R" commands).

Examples of valid assemble cormnands are shown below:

AIOO
A#lOO
A.CRLF+5
A@GAMMA+@X-=I
A+30

Given that the command AIOO has been entered, the following
interaction could take place between SID and the operator:

SID PROMPT

0100
ol~'~

0105
0108
0109
OlOA
OlOB
OlOC
OlOD
0110

OPERATOR INPUT

MVI C, .A-.B
LXI H, .SOURCE
LXI D,+lOO
MOV A,M
INX H
STAX D
INX D
DCR C
JNZ 108

("return" only)

A, B, and SOURCE are symbols that appear in the symbol table. In
this case, SID computes the address difference between A and B as
the operand for the MVI instruction. ~he LXI H operand becomes the
address of SOURCE, while the LXI D instruction receives the operand
value .SOURCE+IOO because .SOURCE was the immediately preceeding
symbolic expression value. This particular program segment moves a
block of memory determined by the address values of the
corresponding symbols.

All Information Presented Here is Proprietary to Digital Research

16

SID User"'s Guide

3.2 The Call (C) Command

3.2 The Call (C) Cowmand

The C command per forms a call to an absolu te location in
memory, without disturbing the register state of the program under
test. The C Command takes the forms:

(a) Cs
(b) Cs,b
(c) Cs,b,d

Although the C command is designed for use with SID utilities, it
can calIon test program subroutines to perform program
initialization, or to make CP/M BDOS calls that initialize various
system parameters before executing the test program.

Form (a) above performs a calIon absolute location s, where s
is a symbolic expression. In this case, registers BC = 0000 and DE
= 0000 in the call. Normal exit from the subroutine is through
execut'ion of a RET instruction that returns control to SID, followed
by the norma~ SID prompt.

Form (b) above is equivalent to (a), except that the BC
register pair is set to the· value of exp'ression b, while DE ,is set
to 0000.

Form (c) is similar to (b); the BC register pair is set to the
value b while the DE pair is set to the value of d. Several
examples of v'alid C commands are shown below. Refer also to the SID
t:ii.lity discussion for examples of the C command in utility
initialization, data collection, and display functions.

(;100
C#4096
C.DISPLAY
C@JMPVEC+=X
C.CRLF,#34
C.CRLF,@Xr+=X

3.3 The Display Memory (D) Command

The D command displays
(8-bit) and word (16-bit)
hexadecimal and ASCII form
following forms:

(a) Ds
(b) Ds,f
(c) D
(d) D,f
(e) DWs
(f) DWs, f
(g) DW
(h) DW, f

selected segments of memory in both byte
formats. The display appears in both
in the output. The D command takes the

All Information Presented Here is Proprietary to Digital Research

17

SID User's Guide 3.3 The Display Memory (D) Command

Forms (a) through (d) display memory in byte format, while
forms (e) through (h) display memory in word forma t. The byte
format display appears as:

aaaa bb bb bb bb cc . • • cc

where aaaa is the base address of the display line and the sequence
of (up to) 16 bb pairs represents the hexadecimal values of the data
stored starting at address aaaa. The sequence of c's represent the
same data area displayed in ASCII format, where possible. A period
(.) is displayed as a place holder when the data item does not
correspond to a graphic character.

Byte mode displays are "normalized ll to address boundaries that
are multiples of 16. That is, if the starting .address aaaa is not a
multiple of 16, then the display line is printed to the next
boundary address that is a multiple of 16. Each display line that
follows contains 16 data elements until the last display line is
enc ounte red.

Command forms (e) through (h) display in word mode which is
similar to the byte mode display described above, except that the
data elements are printed in a double byte format:

aaaa wwww wwww . wwww cc . . • cc

where aaaa is the starting address for the display line and the
sequence of (up to 8) wwww's represent the data items that are
stored in memory beginning at aaaa. Similar to the byte mode
display, the sequence of c's represent the decoded ASCII characters
starting at address aaaa. As in the byte mode display, a period is
displayed as a place holder when the character in that position is
non-graphic.

Contrary to the byte mode display, address normalization to
modulo 16 address boundaries does not occur in the word mode
display. Recall that 8080 double words are stored with the least
significant byte first, and thus the word mode display reverses each
byte pair so that the individual data items are displayed as four
digit hexadecimal numbers with the most significant digits in the
high-order positions.

Command form (a) displays memory in byte format starting at
location s for 1/2 of a standard CRT screen (12 lines). This form
of the command is useful when you want to view a segment of memory
beginning at a particular position with an indefinite ending
address.

Command form (b) is similar to (a), but specifies a particular
ending address. In this case, the start address is taken as s with
the display continuing through address f. Recall that you can abort
excessively long typeouts by depressing any keyboard character, such
as a carriage return.

All Informa tioD Pre sen ted He re is propr ie ta ry to Dig ital Re search

18

19

DIOO ,12A

DWlOO,~28

3.3 The Display Memory (D) Command

All Information Presented Here is Propr ietary to Dig ital ResearcH:

DF3F
D#lOO ,# 200
D.GAMMA,.DELTA+#30
D.GAMMA
DW@ALPHA,+#lOO

The following are examples of valid D commands:

0100 0201 0403 (etc.) OEOD 100F (etc.) ••
0110 1211 1413 (etc.) lElD 20lF (etc.).
012022212423 (etc.) 2928 2B2A !"#$%&"()*+

for example, produces the expanded form of the following output
lines:

0100 01 02 03 04 (e tc.) OE OF 10 •• (e tc.) ••
0110 11 12 13 14 (etc.) lE IF 20 •• (etc.) •
o120 21 22 23 24 (e tc.) 29 2A 2B ! II #$ %& .. () * +

produces the expanded form of the display shown below:

Command forms (e) through (h) parallel the byte display forma ts
given by (a) through (d), except that the display is given in word
format. Ferm (e) displays in word format from location s for 1/2
screen; while form (f) displays from location s through location f.
Form (g) displays from the last display location, or from HL if
thel.e hcs been an immediately preceding breakpoint with no
in te rven ~ng display. Form (h) is simi la r to (g), but displays
through location f. The command:

Command form (d) is similar to (b) except the starting address
is taken automatically as described in form (c) above.

Assume, for example, that decimal values 1 through 255 are
stored in memory starting at hexadecimal address 0100. The command:

Form (c) is similar to (a) and (b), except the starting address
for the display is taken from the last displayed address, or from
the value of the memory address registers (HL) in the case that no
previous display has occurred since the last breakpoint. It is
often convenient, for example, to use form (a) to display a segment
of memory, followed by a sequence of D commands of form (c) to
continue the display. Each D command displays another 1/2 sc reen of
memory.

SID User"s Guide

SID User"'s Guide

3.4 The Fill Memory (F) Command

3.4 The Fill Memory (F) Command

The F command fills memory with a constant byte value, and
take s the form:

Fs,f,d

where s is the starting address for the fill; f is the ending
(inclusive) address for the fill, and d is the 8-bit data item to
store in locations s through f. It is your responsibility to not
fill memory locations that are occupied by the resident portions of
CP/M, including areas reserved for SID. The following are examples
of valid F commands:

FIOO ,3FF ,FF
F.GAMMA,+#100,#23
F@ALPHA,+=I ,=X

3.5 The.Go (G) Command

The G command passes program control to a program under test.
Execution proceeds in real time from'the address specified by the G
command. That is, the G command releases processor control from E,ID
to the program under test. Execution does not return to SID untii a
break or pass point is reached (see the "p" command for a discus~.> ion
of pass points). The operator can force a return to SID, however,
by interrupting the processor with a "restart 7" (RST 7) provided by
the program under test, or forced by external hardware such as front
panel control switches, if available.

The G command takes the following forms:

(a) G
(b) Gp
(c) G,a
(d) Gp, a
(e) G,a,b
(f) Gp, a, b
(g) -G
(h) -Gp
(i) -G,a
(j) -Gp, a
(k) -G, a, b
(1) -G,p,a,b

Forms (a) through (f) 'start test program execution with
symbolic features enabled, while forms (g) through (1) are identical
in function, but disable the symbolic features of SID. In
particular, form (a) starts test program execution from the program
counter (PC) given in the machine state of the program under test
(see the "X" command for machine state display). In this case, no
breakpoints are·set in the test program. Form (b) is similar to

All Information Presented Here is Proprietary to Digital Research

20

21

*a .s

* 030 2 .TYPEOUT

3.5 The Go (G) Command

MOV E,A
MVI C,2
JMP 0005

TYPEOUT:
0302
0303
0305

Test program execution proceeds from the current PC value and stops
when the TYPEOUT subroutine is reached, with the breakpoint message:

Suppose further that you are testing a program that makes calls on
the TYPEOUT subroutine where a break address is to be set. Enter
the command:

All Information Presented Here is Propriet3ry to Digital Research

G, .TYPEOUT

Form (d) combines the functions of (b) and (c): the test
program PC is set to the address p and a temporary breakpoin t is set
at location a. As above, the breakpoint is cleared when control
returns to SID. It should be noted that an immediate breakpoint
always occurs if p = a. If this is not desired, however, you can
use the trace function to single step past the current add.':"ess,
followed by a G command (see the "T" command for actions Of: the
trace far.:ility).

Note that the instruction at a breakpoint address is not
executed when you use the G command. Suppose, for example, that a
subrou tine named TYPEOUT is located at address 0302 in a test
program, consisting of the machine code:

Form (e) extends the breakpoint facility by allowing two
temporary break addresses at a and b. Program execution begins at
the current PC and continues until either address a or b is
encountered. Both temporary break addresses are cleared when SID
returns to command mode. Form (f) is similar to (e)] except the
initial value of PC is set to location p before starting the test
program.

Upon encountering the breakpoint address a, the break address
is printed at the console in the form:

where s is the first symbol in the table that matches address a, if
it exists. Note that the .temporary breakpoint at address a is
automatically cleared when SID returns to command mode (see the "P"
command for permanent breakpoints).

(a), but initializes the test program"'s PC to p before starting
execution. Again, no breakpoints are set in the test program.
Similar to (a), form (c) starts execution from the current value of
PC but sets a breakpoint at location a. The test program receives
control and runs in real time until the address a is encountered.
Note that control returns to SID upon encountering a pass point or
RST 7, as described above.

SID User"'s Guide

SID User"'s Guide 3.5 The Go (G) Command

indicating that control has returned from the test program to SID.
At this point, the program counter of the test program is at
location 0302 (i. e., .TYPEOUT), and the instruction at this location
has not yet been executed. You can execute through the TYPEOUT
subroutine using any of the commands G, T, or U. The following is a
useful command in this situation:

G A,

This command continues execution from 0302, and sets a breakpoint at
the topmost stacked element (given by "All). Since the topmost
stacked element must be the subroutine return address, this
particular G command executes the TYPEOUT subroutine, with a break
upon return to the instruction following the original call to
TYPEOUT.

Command forms (g) through (1) correspond directly to functions
(a) through (f), except that pass points are not displayed until the
corresponding pass counters reach 1 (see the "p" command for details
of intermediate pass point display).

Note that the essential difference between the G command and
the U (Untrace) command is that execution proceeds unmonitored in
real time with the G commanc, while each instruction is executed in
single-step mode with the U command. Fully monitored execution
under the U command has the advantage that you can regain control at
any point in the test program execution. However, execution tjme of
the test program is seriously degraded in TTntrAce mode since
automatic breakpoints are set- and cleared fcllowing each
instruction.

The following are examples of valid G commands:

GIOO
GIOO,103
G.CRLF,.PRINT,#1024
G@JMPVEC+=I , .ENDC, .ERRC
G, .ERRSUB
G, .ERRSUB,+30
-GIO 0,+ 10 ,+ 10

3.6 The Hexadecimal Value (H) Command

The H command performs hexadecimal computations
number base conversion operations. The H command
following forms:

(a) Ha, b
(b) Ha
(c) H

including
takes the

Form (a) computes the hexadecimal sum and difference using the two
operands, resulting in the display:

All Information Presented Here is Proprietary to Digital Research

22

SID User"s Guide

ssss dddd

3.6 The Hexadecimal Value (H) Command

where ssss is the sum a+b, and dddd is the difference a-b, ignoring
overflow and underflow conditions.

Form (b) performs number and character conversion, where a is a
symbolic expression. The display format in this case is:

hhhh #ddddd "c" .s

where hhhh is the four digit hexadecimal value of ai #ddddd is the
(up to) five digit decimal value of ai c is the ASCII value of a
when a is graphic, and s is the first symbol in the table which
rna tches the valu e a, when such a symbol ex ists. Assume, for
example, that the symbol GAMMA is located at address 0100, as in
previous examples. The H commands shown to the left below result in
the displays shown to the right below:

COMMAND RESULTING DISPLAY

HO ,1
H41
HIOO
H.GAMMA
H=GAMMA
H@GAMMA
HFF+=GAMMA
H"A"
H"A"+=GAMMA

0001
0041
0100
0100
0001
0201
0100
0041
0042

FFFF
#65 "A"
#256 .GAMMA
#256 .GAMMA
#1
#513
#256 .GAMMA
#65 "A"
#66 "B"

Command form (c) prints the complete list of symbols along with
their corresponding address values. The list is printed from the
first to last symbol loaded, and can be aborted during typeout by
depressing any keyboard character.

3.7 The Input Line (1) Command

When testing programs that run in the CP/M environment, it is
often useful to simulate the command line that the CCPnormally
prepares upon program load. The I command takes the form:

Iccccc .•• ccc

where the sequence of c"s represent ASCII characters that normally
follow the test program name in the CCP command line. For example,
the CP/M "DUMP" program is normally started in CCP command mode by
typing:

DUMP X.COM

which causes the CCP to search for and load the DUMP.COM file, and

All Information Presented Here is proprietary to Digital Research

23

SID User"'s Guide 3.7 The Input Line (I) Command

pass the filename "X.COM" as a parameter to the DUMP program. In
particular, the CCP initializes two default file control blocks,
along with a default command line that contains the characters
following the DUMP command.

To trace and debug a program such as DUMP, invoke the SID
program with the following command:

SID DUMP.COM

which loads the command file containing the DUMP machine code. If
the symbol table is available, the SIp invocation is:

SID DUMP.COM DUMP.SYM

In either case, SID loads the DUMP program and prompts the console
for a command. To s imula te the CCp"' s command line prepara tion, type
the command:

IX.COM

where the "I" denotes the Input command, which is followed by the
simulated command line. The operator can then commence the debug
run with default areas properly setup.

The I command specifically initialb:es the default file control
block in low me~ory, labelled DFCBI, that is normally located at
OOSC. The fiie control block which is initialized by the I command
is completp in the sense that the program can simply address DFCBI
and perform and open, make, or delete operation without further
initiglization. As a convenience, a second filename is initialized
at location DFCB~, which is at address DFCBI+OOIO (hexadecimal).

It is your responsibility to move the second drive number,
filename, and file type to another reg ion of memory before per forming
file operations at DFCBI since the 16-byte region at DFCB2 is
immediately overwritten by any file operation. Further, the default
buffer, labelled DBUFF, is initialized to contain the entire command
line with the first byte of the buffer containing the command line
length. In a standard CP/M system, the DBUFF area is assumed to
start at 0080 and end at OOFF. Note, however, that the I command
restricts the simulated CCP command line to 63 characters since
SID"'s line buffer is used in the simulation.

Given an I command of the form:

I dl:fl.tl d2:f2.tl

where dl: and d2: are (optional) drive identifiers; fl and f2 are
(up to eight character) filenames, and tl and t2 are (up to three
character optional) file types, two default file control block names
are prepared in the form:

All Information Presented Here is proprietary to Digital Research

24

SID User"'s Guide 3.7 The Input Lipe (I) Command

DFCBl: dl'" fl'" tl'" 00 00 00 00
DFCB2: d2'" f2'" t2'" 00 00 00 00

00 (curren t record field)

If dl: is empty in the original command line, then dl'" = 00 (which
automatically selects the default drive) , otherwise if dl = A, B, c:.,'
or D, then dl'" = 01, 02, oj, or 04, respectively, which properly
initializes the file control block for automatic disk selection.
Field fl'" is initialized to the ASCII filename given by fl, paddad
to an eight character field with ASCII blanks. Similarly, tl'" is
initialized to the ASCII filetype, padded with blanks in a field 'of
length three.

Lower-case alphabetics in fl and
case in fl'" and tl"', respectively.
respective length fields are truncated
extent field is zeroed in preparation
make the file.

tl are translated to upper~

Name s tha t exceed their
on the right. Finally, the
for a BDOS call to open or

The second default file control block given by d2, f2, and t2
is prepared in a similar fashion and stored starting at location
006C. Note that the current record field at location 007C is also
initialized to 00. If any of the fields fl, tl, f2, and t2 are not
included in the command line, their corresponding fields in the
default file control blocks are filled with blanks.

Ambiguous references that use the "*" or "?" characters are
processed in the same manner as in the CC~: the "*" symbol in a
name or type field causes tne U.2ld to be right-filled with "?"
characters. The input lines shown below illustra te the defauLt area
initialization w~1ich takes place for various unambiguolTffikand
ambiguous filenames. The areas shov.n to the right give~"(the

hexadecimal values which begin at the labelled addresses, wher.e
ASCII values A, B, C, and D have the hexadec imal values 4 l, 42., 43;
and 44, respectively. Further, the special characters ":", ".",:
"*", and "?" have the ASCII encoded values 3A, 2E, 2A, and 3F, .while
an ASCII space has the hexadecimal value 20: ~~f

COMMAND LINE DEFAULT DATA AREA INITIALIZATION

I DFCBl: 00
20 20 20 20 20 20 20 20
20 20 20 00 00 00 00

DFCB2: 00
20 20 20 20 20 20 20 20
20 20 20 00 00 00 00
00
00

DBUFF: 00 00 .' .

All Information Presented Here is proprietary to Digital Researeh

25

!r

SID User ~ s Guide 3.7 The Input Line (I) Command

I A.B DFCB1: 00
41 20 20 20 20 20 20 20
42 20 20 00 00 00 00

DFCB2: 00
20 20 20 20 20 20 20 20
20 20 20 00 00 00 00
00
00

DBUFF: 04 20 41 2E 42 00

IA:B.C b:d.e DFCB1: 01
42 20 20 20 20 20 20 20
43 20 20 00 00 00 00

DFCB2: 02
44 20 20 20 20 20 20 20
45 20 20 00 00 00 00
00
00

DBUFF: OB 41 3A 42 2E 43 20
42 3A 44 2E 45 00

I AA* .B?C D: DFCB1: 00
41 41 3F 3F 3F 3F 3F 3F
42 3F 43 00 00 00 00

DFCB2: 04
20 20 20 20 20 20 20 20
20 20 20 00 00 00 00
00
00

DBUFF: OB 20 41 41 2A 2E 42
3F 43 20 44 3A 00

Note that the I command is also used in conjunction with the R
command to read program files and symbol tables after SID
has initially loaded. Details of the use of I in
this situation are given with the R command that follows.

Additional valid I commands are given below:

I x.dat
I x. inp y. ou t
Ia:x.inp b:y.out $-p
ITEST.COM
I TEST.HEX TEST.SYM

All Information Presented Here is Proprietary to Digital Research

26

SID User's Guide

3.8 The List Code (L) Command

3.8 The List Code (L) Command

The L command disassembles machine code in the memory of the
machine, with symbolic labels and operands placed in the appropr ia te
fields, where possible. The L command takes the forms:

(a) Ls
(b) Ls,f
(c) L
(d) -Ls
(e) -Ls,f
(f) -L

Form (a) lists disassembled machine code starting at symbolic
location s for 1/2 CRT screen (12 lines). Form (b) specifies an
exact range for disassembly: s specifies the starting location, and
f gives the final disassembly location. Form (c) is similar to (a) ,
but disassembles from the last listed, assembled (see the A
command), ~Laced (see the T and U commands), or break address (see
the G am P commands). Since form (c) also lists 1/2 CRT screen, it
is often used following form (a) to continue the disassembly process
th rough another segment of the prog ram. Forms (d) through (f)
parallel (a) through (c), but disable the symbolic features of SID.
In particular, the minus prefix prevents any symbol lookup
operations during the disassembly.

The L commana output takes the following form:

sssss:
aaaa opcode operand .ttttt

where "sssss:" represent a symbol which labels the program location
9iven by the hexadecimal address aaaa{ when the symbol exists. ~he

"opcode" field gives the 8 080 mnemonic for the instruction at
location aaaa, and the "operand" field, when present, gives the
hexadecimal values which follow the opcode in memory. The symbol
". ttttt" is printed when the instruction references a memory address
which matches a symbol in the table.

When the operation code at the list address is not a valid 8080
mnemonic, the output form is:

??= hh

where hh is the hexadecimal value of the invalid operation code.

Several valid L commands are listed below.

LlOO
L#1024,# 1034
L.CRLF
L@ICALL,+30
-L.PRBUFF+=I,+'A'

All Information Presented Here is Proprietary to Digital Research

27

SID User"s Guide

3.9 The Move Memory (M) Command

3.9 The Move Memory (M) Command

The M command allows you to move blocks of data values from one
area of memory to another. The M command takes the form:

Ms,h,d

where s is the start address of the move operation; h is the high
(last) address of the move, and d is the starting destination
address to receive the data. SID transfers one byte at a time from
the start address to the destination address. Each time a byte
value is moved, the start and destination addresses are incremented
by one. The move process terminates when the start address
increments past the final f address. The command:

MIOO ,IFF ,3000

for example, replicate s the entire block of memory from 0100 th rough
OlFF at the destination area from 3000 through 30FF in memory. The
data block from 0100 through OlFF remains intact.

Note that data areas may overlap in the move process. The
command:

MIO 0 , IFF, 10 1

shows an inst.:;mce where the value at location 0100 is propagated
throughout the entire block from 0101 through 0200.

A Ilurnbc: .. of valid M commands are listed below:

M-IOO,FFDO,lOO
M.X,+=Z,.Y
M.GAMMA,+FF', •DELTA
M@ALPHA+=X,+iSO,+lOO

3.10 The Pass Counter (P) Command

The P command allows you to set and clear "pass points" and
"pass counts" in the program under test. The P command takes the
following forms:

(a) Pp
(b) Pp,c
(c) P
(d) -Pp
(e) -P

A "pass point" is a program location to monitor during
execution of the test program. Similar to a temporary breakpoint
(see the G command), a pass point causes SID to stop execution of
the test program each time an active pass point is reached. Unlike
a temporary breakpoint, a pass point is not automatically cleared
each time it is reached during execution. Further, unlike a

All Informa tion Presented Here is propr ie tary to Dig i tal Re search

28

SID User"'s Guide 3.10 The Pass Counter (P) Command

temporary breakpoint, a pass point break occurs after the
instruction as the pass address is executed. In this way, you can
simply continue the execution of the test program under control of a
G command until the next pass point is executed, or until a
temporary breakpoint is reached.

Each pass point can have an optional "pass count" which
defaults to the value 1. The pass count enhances this facility by
allowing several passes through a pass point before the break
actually occurs. In particular, a pass count in the range l-FF
(decimal 1 through 255) can be associated with a particular pass
point. Each time the instruction at a pass point is executed, its
corresponding pass count is decremented. The decrementing process
proceeds until the pass count reaches 1, at which time the break
address is printed and execution of the test program stops. When a
pass count reaches 1, the pass point becomes a permanent break
address which halts execution each time the instruction is executed.
Notel:.hat C1 paSS count does not change once it has reached 1. Up to
eight distinct pass points can be actively set at any particular
time.

Form (a) sets a pass point at address p with a pass count of 1,
causing address p to become a permanent breakpoint. Form (b) is
similar, except that the pass count is initialized to c. Form (c)
displays these active pass points in the format:

cc pppp .sssss

where cc is the hexadecimal value of the pass count that is
currently associated with the pass address pppp, and sssss is a
symbol that matches the address pppp, if such a symbol exists.

Form (d) clears the pass point at address p, while form (e)
clears all active pass points. Note that the command:

Pp, a

is equivalent to form (d).

Each time a pass point is encountered, SID prints the pass
information in the format:

cc PASS pppp .sssss

where cc is the current pass count at pass point pppp (cc is
decremented when greater than l). As above, the symbol sssss
corresponding to address pppp is printed when possible.

The special command forms "-G" and "-U" to disable the
intermediate pass trace as the counters are decremented down to 1.
Suppose, for example, the TYPEOUT subroutine is a part of a program
under test, as shown in the G command above. Issue the command:

P .TYPEOUT,# 30

All Information Presented Here is Proprietary to Digital Research

29

SID User's Guide 3.10 The Pass Counter (P) Command

This P cormnand sets a pass point at the location labelled by
"TYPEOUT" which is assumed to exist in the symbol table. The pass
count is set to decimal 30, which allows the pass point to execute
30 times before a breakpoint is taken. Given that the pass point at
TYPEOUT is in effect, the command:

G

starts execution of the test program with no temporary breakpoint.
Each time the pass point is executed, the following pass trace is
execu ted.

lE PASS 0302 .TYPEOUT
(register trace)
lD PASS 0302 .TYPEOUT
(register trace)
lC PASS 0302 .TYPEOUT
(register trace)

01 PASS 0302 .TYPEOUT
"(register trace)
* 303

The "register trace" shows the state of the CPU registers before the
"MOV E,A" at TYPEOUT is executed (see the "X" comr,and for register
display format). Note that the final breakpoint address is 0303,
which follows the "MOV" instruction at the pass address 0302.
Depress any keyboard character during the pass point trace, and SID
immediately stops execution following the instruction at the pass
point address. If the cormnand

-G

had been issued, the intermediate pass traces do not appear at the
console. In this particular case, only the final trace:

01 PASS 0302 .TYPEOUT
(register trace)
* 303

is printed. Although the intermediate pass traces are not
displayed, you can .abort execution by depressing a keyboard
character. If an intermediate pass point is encountered with trace
disabled, SID aborts execution and returns control to the keyboard.

Temporary breakpoints can also be set while pass points are in
effect. That is, commands such as:

Ga,b
Ga,b,c
G,b
G,b,c

can be issued that intermix with the permanent breakpoints that are
set with the P co~nand. Note, however, that permanent breakpoints

All Information Presented Here is Proprietary to Digital Research

30
- -- -------------------

SID User s Guide 3.10 The Pass Counter (P) Command

override the temporary breakpoints that are given by band c when
they occur at the same address. Further, T and U command can trace
sections of the test program while permanent breakpoints are in
effect. In this case, the pass counts decrement as described above,
with a break taken when the count reaches 1.

Valid P commands are shown below:

P100 ,FF
P.BDOS
P@ICALL+30 ,i 20
-P.CRLF

3.11 The Read Code/Symbols (R) Command

The R command, in conjunction with the I command, reads program
segments, symbol tables, and utility functions into the Transient
Program Area. The R corr~and takes the forms:

(a) R
(b) Rd

The I command sets the filenames that will oe involved in the read
opera tion. Form (a) reads the prog ram and/r,r symbol table given by
the I command without applying an offset to the load addresses.
Form (b) adds the displacement value d to each program load addres~

and/or symbol table address. Note that this addition takes place
without overflow checks so that negative bias values can be applied.
As a simple case, the usual initia~ion of SID:

A>SID X.COM

can be replaced by the following sequence of commands:

SID
IX.COM
R

Starts SID without a test program
Initialize the input line
Read the test program to memory

The response from SID in this case is exactly the same as the normal
initialization, with the "NEXT PC END" message as described in
Section 1.

A program and symbol file can be read by preceding the R
command with an I command of the form:

I x.y u.v

where x.y is the program to load, and 'u.v is the symbol table file.
Note that y is usually the type "COM" ~ x is usually the same as u,
and v is usually the type "SYM". Thus, the following is a typical
command sequence of this form:

IDUMP.COM DUMP.SYM
R

All Information Presented Here is Proprietary to Digital Research

31

SID User""s Guide 3.11 The Read Code/Symbols (R) Command

This sequence reads the DUMP.COM program file into the Transient
Program Area and loads the symbol table with the information given
by DUMP.SYM. Programs with filetype "HEX" load into the locations
specified in the In tel forma tted hexadec imal records, whi le prog rams
with filetype "UTL" are assumed to be SID utility functions that
load and relocate automatically. All other file types are assumed
absolute, and load starting at the base of the transient area.
Utility functions automatically remove any existing symbol
information when they relocate, but in all other cases the symbol
load operations are cumulative. In particular, the special input
form:

1* U.v
R

skips the program load since there is an asterisk in the program
name position, and loads only the symbol table file. Thus, a
sequence of commands of the above form can load the symbol tables
for selective portions of a large program that was initially
developed' in small modu..le s.

Suppose, for example, that a report gE:neration program has been
developed using MAC, which consists of the following modules:

IOMJD.ASM
SORT.ASM
MERGE.ASM
FORMAT.ASM
MAIN.ASM
DATA.ASM

I/O Module
File Sorting Module
File Merge Module
Rep0l.L F01~llat Module
Main Program Module
Common Data Definitions

Suppose further that each module has been separately assembled using
MAC, resulting in several "HEX" and "SYM" files corresponding to the
individual program segments. The program segments have been brought
together using SID to form a memory image by typing the sequence of
commands:

SID
IIOMOD .HEX
R
ISORT .HEX
R
IMERGE.HEX
R
I FORMAT .HEX
R
IMAIN.HEX
R
IDATA.HEX
R

Start the SID program
Initialize IOMOD
Read I/O Module
Initialize SORT
Read Sort Module
Initialize MERGE
Read Merge Module
Initialize FORMAT
Read Format Module
Initialize MAIN
Read Main Module
Initialize DATA Area
Read Initialized Data

Following this sequence, the Transient Program Area contains the
complete memory image of the report generation program. Suppose the
information printed following the last R command is:

All Information Presented Here is Proprietary to Digital Research

32

SID User~s Guide

NEXT PC END
lB 3E a10 a 8E aa

3.11 The Read Code/Symbols (R) Command

which indicates that the high memory address is lB3E. Using the H
command:

H1B

you find tha t lB (hexadec imal) pag es is the same as 27 (dec imal)
pages. At this point, return to CCP mode by typing either a
control-C (warm start), or "GO" command, which leaves the memory
image intact. Then issue the command:

SAVE 27 REPORT .COM

to create a memory image file on the diskette. Then re-enter SID
using the following command:

SID REPORT .COM

to load the entire module for testing. Individual portions of the
report generator can then be symbolically accessed by selectively
loading symbol tables from the original modules. For example, the
MAIN and SORT modules can be debugged by subsequently loading the
corresponding symbol information:

1* MAIN.SYM
R
1* SORT.SYM
R

wh ich prepare s the symbol inf :Hma tion for subsequent debugg ing.
I nd i v idual segments of the report genera tor are then tested and
reassembled. If an error is found in the SORT module, for example,
the SORT.ASM file is edited to make necessary changes, and the
module is reassembled with MAC, resulting in new "HEX" and "SYM"
files for the SORT module only. Given that enough "expansion" area
has been provided following the SORT module, SID is reinitiated and
the SORT module is included:

SID REPORT .COM
ISORT.HEX SORT.SYM
R

which overlays the changed SORT module in the original report
generator memory image. You can then load additional symbol tables
by typing I and R commands such as:

1* MAIN.SYM
R
1* DATA.SYM
R

to access symbols in the SORT, MAIN, and DATA modules.

All Information Presented Here is Proprietary to Digital Research

33

SID User"s Guide 3.11 The Read Code/Symbols (R) Command

Note that several symbol table files can be concatenated using
the PIP program (see the "CP/M Features and Facilities" manual for
PIP opera tion) before SID is invoked. For example, the PI P command:

PIP NOBUGS.SYM=IOMOD.SYM,SORT.SYM,MERGE.SYM,FORMAT.SYM

creates a file called NOBUGS.SYM that holds the symbols for IOMOD,
SORT, MERGE, and FORMAT. The SID command:

SID REPORT.COM NOBUGS.SYM

loads the memory image for the report generator, along with the
symbol tables for these particular modules. Additional symbol files
can then be selectively loaded using I and R commands. The symbol
file for the entire memory image can then be constructed using the
PIP corrunand:

PIP REPORT.SYM=NOBUGS.SYM,MAIN.SYM,DATA.SYM

which al~ows you to type:

SID REPORT.COM REPORT.SYM

to load the memory image for the report generator, along with the
entire symbol table. Recall, however, that the symbol table is
always searched in load-crder, and thus symbol names which are the
~ame in two modules must be distinguished using qualified symbolic
names (see section 1).

As mel~tioned above, form (b) allows a displacement value d to
be added to each program address and symbol value. The displacement
va~ue hns no effect, however, when the program is a SID utility
(filetyr-e "UTL"). The commands:

IDUMP.HEX DUMP.SYM
R1000

for example, cause the DUMP program to be loaded 1000 (hexadecimal)
locations above its normal origin, with properly adjusted symbol
addresses. Note that the bias value can be any symbolic expression,
and thus the corrunand:

R-200

first produces a (two"s complement) negative number which is added
to each address. Since overflow from a 16-bit counter is ignored,
this R command loads the program 200 (hexadeci.ma.l) locations below
the normal load address, with symbol addresses biased by this same
amou n t.

Error reporting during the R command is limited to the standard
"?" response, which indicates that either the program or symbol file
does not exist, or the program or symbol file is improperly formed.
Similar to the SID startup messages, the response

All Information Presented Here is proprietary to Digital Research

34

SID User~s Guide

SYMBOLS

3.11 The Read Code/Symbols (R) Command

occurs following program load, and appears before the symbol load.
Thus, a "?" error before the SYMBOLS response indicates that the
error occurred during the program load, while the "?" error after
the SYMBOLS message indicates that an error occurred during the
symbol file load operation. The exact position of a symbol file
error can be found by subsequently using the H command to view the
portion of the symbol table that was actually loaded.

3.12 The Set Memory (S) Command

The S command allows you to enter data into main memory. The
forms of the S command are:

(a) Ss
(b) SWs

Form (a) allows data to be entered at location s in byte (a-bit) or
character string mode, while form (b) stores word (16-bit) mode data
items. In eithp.r case, the SID program prompts the con~ole with
successive addresses, starting at location s, along with the data
item presently located at that address. As each line prompt occurs,
you can type a single carr iage return or a s:Imbolic expression
(followed by a carriage :eturn), which is evaluated and becomes the
new data item at that location. If you type a single carriage
return, then the d~~a c~~ment at that location remains unchanged.
The S cJmmand terminates whenever an invalid data item is detected,
or when you type a single "." followed by a carr iage return. Form
(a) allows single byte data, a'1d produces the standard "?" when a
double byte value is entered wIth a non-zero high-order byte. In
addition, form (a) also allows long ASCII string data to be entered
in the format:

"ccccc • • •ccccc

where the sequence of c~s (terminated with a carriage return)
represents graphic ASCII characters to be entered at the prompted
location. No translation from lower- to upper-case takes place
during entry. Further, the next prompted address is automatically
set to the first unfilled location following the input string.

A valid input sequence following the command:

SlOO

is shown below, where the SID prompt is given on the left, and the
operator~s input lines are shown to the right, where "cr" denotes
the carriage return key.

All Information Presented Here.is proprietary to Digital Research

35

SID User"'s Guide

SID PROMPT

0100 C3
0101 24
0102 CF­
0103 4B
0108 6E
0109 E2
olOA D4

3.12 The Set Memory (S) Command

OPERATOR INPUT

34cr
#254cr
cr
"ASCIIcr
=X+5cr
"'%"'cr
.cr

A valid double byte input sequence following the command:

SW.X+#30

is shown below:

SID PROMPT OPERATOR INPUT

2300
2302
2304
2306
2308

006D
4F32
33E2
FFll
348F

44Fcr
@GAMMAcr
cr
.X+=I-#20cr
.cr

3.13 The Trace Mode (T) Command

The T command allows you to sL.gle i_.t' multiple step a test
program while viewing the CPU registers as they change. In
addition, you can use the T command with SID utilities to colJ:ect
test program data for later display (see the section entitled "SIQ
Utilities"). The forms of the T command are:

(a) Tn
(b) T
(c) Tn,c
(d) T,c
(e) -T (with options a - d)
(f) TW (with options a - d)

--.
(g) -TW (with options a- d) . I

Form (a) traces program execution from the current value of th~
program counter PC (see the "X" command for PC value as well as thE¥­
format of the CPU state display). Form (b) is the tr iv ial case of
(a) with an assumed single step count of n = 1. In either case, the
SID program displays the register state, along with the decoded
instruc tion (assuming" -A" is not in effec t) before each instruc t ion
is executed. For example, the command:

T4

traces four program steps, producing the format:

All Information Presented Here is proprietary to Digital Research

36

SID User~s Guide 3.13 The Trace Mode (T) Command

Valid trace commands are shown below:

T100
T# 30, .COLLECT
-TW=I,3E03

3.14 The Untrace Mode (U) Command

The U command is similar to the T command given above, except
that the CPU register state is not displayed at each step. Instead,
the test program runs fully monitored so that program execution can
be aborted at any time, or for the collection of data for a SID
utility function. The forms of the U command parallel the T
command:

(a) Un
(b) U
(c) Un,c
(d) U,c
(e) . -U (with options a - d)
(f) UW (with options a - d)
(g) -uw (with options a d)

:?orms (a) through (d) perform the analogous functions of the "T"
command forms (a) through (d) , wjthou t displaying the reg iste r sta te
at each step. Forms given by (e) differ from the T command;
however, instead 0f disabling the symbolic features, the following
C0Tl1""'12n(l forms:

-Un
-J
-Un,c
-U,c

disable the intermediate pass point display (see the "P" command),
until the corresponding pass counts reach 1.

Forms given by (f) correspond to the "T" command exactly,
except that the trace display is disabled. In this case, the
current subroutine level is run fully monitored, but higher
subroutine levels run in real time.

Forms given by (g) are similar to (f), but disable the pass
point display, as described above.

You can abort execution in untrace mode by depressing any
keyboard character. The break address is displayed, and control
returns to SID command mode.

Valid U commands are given below:

UFFFF
U#lOOOO,.COLLECT
UW=GAMMA,.COLLECT

All Information Presented Here is Proprietary to Digital Research

39

I

SID User
,

Guide 3.13 The Trace Mode (T) Commands

(reg iste r state 1) opcode 1
label:
(reg iste r state 2) opcode 2
label:
(register state 3) opcode 3
label:
(reg iste r state 4) opcode 4 *bbbb

showing the register state before each corresponding operation code
is executed. Each operation code is written in the same format as
the L and X commands, with interspersed symbolic operands decoded
wherever possible. In addition, instructions that reference memory,
such as INR M, are listed with the memory operand in the form:

opcode M =hh

where "opcode" is the memory refe renc ing instruc tion, and hh is the
hexadecimal value contained in the memory address given by the HL
register pair before the operation takes place. The interspersed
labels show program addresses when they occur in the flow of
execution. The final break address, denoted by "*bbbb" above, shows
the value of the program counter after opcode 4 is executed. You
can display the CPU state at this point by typing the single
character "X" command.

Forms (c) and (d) are used only with the SID utilities, and
au tornatic ally per form a C!'.i.L c afte reach instruc tion execute s. The
value of c corresponds to a L,tility entry address for data
collection. The fc~ lQ1.·~,.lg sections detail these forms. Note,
however. that form (d) is equivalent to (c) with a single step count
of n = 1.

Forms given by (e) parallel (a) through (d), but the preceding
minus sign disables the symbolic features of SID. In particular,
neither the symbolic operands nor the symbolic labels are decoded in
the trace process. This option speeds up the operation of SID
slightly in trace mode when large symbol tables are present.

Forms given by (f) parallel (a) through (d), but perform a
"trace without call" function. It is often useful, for example, to
trace mainline program code, but not trace into the subroutines
which are called from the mainline execution. The TW cormnand
performs this function by running the test program in real time
whenever a subroutine is entered, returning to fully traced mode
upon return to the current subroutine level. If a return operation
takes place at the current level (i.e., a RET is executed in fully
traced mode), then tracing continues at the encompassing subroutine
or mainline program level. For example, suppose the mainline and
subroutine structure shown below exists in a particular program:

All Information Presented Here is Proprietary to Digital Research

37

SID User~s Guide 3.13 The Trace Mode (T) Command

MAINLINE

CALL Sl
MOV B,C
MOV C,D

JMP 0000

SUBROUTINE 1

Sl: MOV A,C

CALL S2
MOV C,E
MOV D,E

RET

SUBROUTINE 2

S2: MOV A,D

CALL S3
MOV D,H

RET

SUBROUTINE n

Sn: MOV A,L

MOV C,L
MOV D,L

RET

Suppose further that the test program is stopped within subroutine
Sl before the call to subroutine S2. The command:

T#lOO

traces from Sl through S2, S 3, and so forth until level Sn is
encountered. Although this form of the trace could be useful, it is
often more enlightening to trace only at a particL'lar subroutine
level, and view the effects of the subroutine levels above Sl. In
this manl"ler, an offending subroutine is often easily discovered
without tracing non-essential program flows. If you type the
following command while at subroutine level Sl, all subsequent
levels from S2 and beyond are executed in real time as if a "G"
command had been performed at each CALL within Sl.

TW#lOO

Upon executing the RET instruction within Sl, tracing resumes at the
Illainl.".ne level. "Any subroutine calls following CALL Sl at the main
level are not subsequently traced.

Forms 3iven by (g) parallel (a) through (d), but disable the
symbolic features of SID in the same manner as form (e).

Note that SID allows tracing up to Read Only Memory (ROM)
program code. At the point ROM is entered, SID stops the trace
operation, and runs the ROM code in real time. An automatic
breakpoint is set which intercepts program control when ROM code is
exited. The assumption, however, is that ROM code was entered via a
subroutine call (CALL or RST n), not via a PCHL or JMP instruction.
In any case, the return address following the ROM execution is taken
as the topmost address in the test program~s stack.

Note further that SID does not trace execution of calls through
the BDOS code, since these operations are often quite lengthy, and
can occassionally require real time operation to perform various
disk functions. Thus, entry to the BDOS is intercepted by SID, and
resumed following completion of the BDOS function.

Abort tracing at any time by depressing a keyboard character.
Do not use the RST instruction to terminate trace functions.

All Information Presented Here is proprietary to Digital Research

38

SID User'-s Guide 3.15 The Examine CPU State (X) Command

3.15 The Examine CPU State (X) Command

The X command allows you to examine and alter the CPU state of
the program under test. The X command takes the following forms:

(a) X
(b) Xf
(c) Xr

Form (a) displays the entire CPU state in the format:

CZMEI A=aa B=bbbb D=dddd H=hhhh S=ssss P=pppp op sym

where C, Z, M, E, and I represent the true or false conditions of
the CPU carry, zero, minus, even parity, and interdigit carry,
respectively. If the position contains a "_" then the corresponding
flag is false, otherwise the flag letter is printed. The byte value
aa is the value of the A register, while the double byte values
bbbb, dddd, hhhh, ssss, and pppp, give the 16-bit values of the Ee,
DE, HL, Stack Pointer, and Program Counter, respectively. The field
marked "0p " gives the decoded mnemonic instruction at location pppp,
unle ss II -A" is in effec t, in wh ich case the hexadec imal v alu e of the
operation code is printed. The " sym " field contains a decoded
operand, when possible. Refer to the L command for the format of
the symbolic instruction decoding. The single letter "X" command
might result in a display of the form:

C-M-- ~=03 B=34EF D=2000 H=334E S=4323 P=OlOO LDA 0223 .Q

which, for eX3mple, indicates that the carry and minus flags are
true, while the zero, even parity, and interdigit carry flags are
false. Further, the A register contains 03, while the B, C, D, E,
H, and L resisters contain the hexaqecimal values 34, EF, 20, 00,
33, and 4E, respectively. The value of the Stack Pointer is 4323,
and the Program Counter is at location 0100. The next instruction
to execute at location 0100 is an accumulator load (LDA) from
location 0233. Further, the fir st symbol in the table tha t rna tches
address 0233 is Q.

Form (b) allows you to change the state of the CPU flags. In
this case, f must be one of the condition code letters: C, Z, M, E,
or 1. The present state of the flag is displayed (either the flag
letter if true, or a "_" if false). You can either type a single
carriage return, which leaves the flag in its present state, or you
c an type a 1 to set the flag true, or a 0 to rese t the flag to
false. Given that the carry flag is true, for example, the command:

XC

produces the SID response:

C

followed by a space, indicating that the carry is currently set,
awaiting possible change. Enter a carriage return to leave the flag

All Information Presented Here is proprietary to Digital Research

40

SID User" s Gu ide 3.15 The Examine CPU State (X) Comma~q

set, or a 0 to reset the carry to false. Similarly, if the zex.<;>·,:
flag is false, the command:

XZ

produces the SID response:

indicating that the zero flag is false. Enter a carriage return i~

the state is to remain unchanged, or a 1 to set the zero flag t<;.>
true.

Form (c) allows alteration of the individual CPU regist,~;rs,_'

where r is one of the register names A, B, D, H, S, or P. In tl1is
case, the current content of the register is displayed, ang,the
console is prompted for input. If you type a single carr.iage
return, the data value remains unchanged. Otherwise, the symbolic
expression is evaluated and becomes the new value of the reg is te"'J!:.. ,
Only byte values are acceptable when the "XA" form is used,cw~ile

double byte values are accepted in the remaining forms. Not'e: ,that:
the BC, DE, and HL registers must be altered as a pair. Th€ SID
interaction shown below is typical when the A register is altered~

Xl;,.
A=03 45 cr

where you type the "XA"; SID pr ints the "03" as the value of the p"..
register, and you type "45" ~~ a ~eplacement for A"s value. Th~

"cr" represents the carriage return key in this example and in the
e>,amples that follow. The following interactions with SID provide.
additional examples in the format described above:

XB
B=34EF cr (data remains unchanged)

XD
D=2000 2300 cr (D changes to 23)

XH
H=334E .GAMMA cr

XS
S=4323 @STKPTR+#lOO cr

All Information Presented Here is proprietary to Digital Resea~Gh

41

Section 4
SID Utilities

SID utilities are special programs that operate with SID to
provide additional debugging facilities. As described in Section 1,
you load a SID utility by typing:

SID x.UTL

where x is the name of a utility program, described in the following
sections. Upon initiation, the utility program loads, relocates,
and prompts the console for any necessary parameters. Then you
collect the necessary program test data (using the U or T command) ,
and display the information using a call to the utility display
subroutine. The mechanisms for system initialization, data
collection, and data display are given in detail below.

4.1 utility Operation

A particular SID utility loads into memory in much the same
manner as a normal test program. The utilities, however,
automatically move themselves into high memory, occupying the region
directly below the SID program, as described in Section 1. The
utility ::'oad operation can be accomplished by simply typing the
;.tility name with the SID command as shown above. You can also load
a utility during the SID execution, as described in the I and R
corrrnands. Recall, however, that all existing symbol information is
removed when the utility loads, and must be reinitialized if
required for the debugging run.

Normally, a SID utility has three primary entry points:
INITIAL for utility (re) initialization, COLLECT for data collection,
and DISPLAY for data display. After loading, the utility sets up
these symbols in the table, and types the entry point addresses in
the forma t:

• I NI TI AL = iii i
.COLLECT = cccc
.DISPLAY = dddd

where iiii, cccc, and dddd are the hexadecimal addresses of the
three entry points. Note, however, that the three symbolic names
are equivalent to these three addresses.

Following initial sign on, the utility may prompt the console
for additional debugging parameters. After the interaction is
complete, you can use the I and R commands to load test programs and
symbol tables to proceed with the debug session.

All Information Presented Here is proprietary to Digital Research

43

SID User"'s Guide 4.1 Utility Operation

During the debug run, data collection takes place by running
the test program in monitored mode using the U or T commands.
Either of the following commands:

UFFFF , . COLLECT
UFFFF,cccc

direct the SID program to run the test program from the current
Program Counter for a maximum of 65535 (FFFF hexadecimal) steps,
with a call to the data collection entry point of the utility
prog ram. Each instruction breakpoin t sends informa tion to the
utili ty prog ram, where it is tabula ted for la ter display. Note tha t
in this particular case, you can stop the untrace mode by depressing
the return key before the sequence of 65535 steps is completed.

Following a series of data collection operations, enter either
of the following commands that call the utility DISPLAY entry point
to print the accumulated data:

C. DISPLAY
Cdddd

Then, resume the data collection process, as described above,
followed by additional display operations.

At any point, you can reinitialize the utility by typing either
of the following commands:

C. INITIAL
Ciiii

which causes reinitialization of the utility tables. The utility
then prompts for additional parameters to complete the
reinitialization process.

Note that loading and executing more than one utility function
during a debugging session can produce unpredictable results.

The remaining sections present the functions of the SID
utilities.

4.2 The HIST utility

The HIST utility creates a histogram (bar graph) of the
relative frequency of execution in selected program segments of a
program under test. The HIST utility allows you to monitor "hot
spots" in the test program where the program is executing most
frequen tly.

After initial sign-on, as described in the previous section,
the HIST utility prompts the input console:

TYPE HISTOGRAM BOUNDS

All Information Pre sen ted Here is pl:opr ie ta ry to Dig ital Re search

44

SID User"'s Guide 4.2 The HIST utility

You must respond with two symbolic expressions, separated by a
comma:

llll,hhhh

where 1111 is the lowest address to monitor, and hhhh is the highest
address. To collect histogram information, you must use one of the
following command forms:

Tn,c
Un,c

T,c
U,C

TWn,c
UWn,c

TW,c
UW,c

-Tn,c
-Un,c

-T,c
-U,c

-TWn,c
-UWn,c

-TW,c
-UW,c

where c is either . COLLECT , or the address corresponding to the
COLLECT entry point. Although any of these commands may be used,
the form:

Un, •COLLECT

is nearly always used since the trace output is disabled, the test
program is fully monitored, and data collection takes place at each
program step.

Following a series of data collection operations, display the
histogram by typing:

C.DISPLAY or Cdddd

The histogram is then printed in the following format:

HISTOGRAM :
ADDR
aaaa
bbbb
cccc

xxxx
yyyy
zzzz

RELATIVE FREQUENCY, MAXIMUM VALUE = I1mmm

where addresses aaaa through zzzz span the range from the low to
high address range given in the initialization of HIST. The maximum
value mmmm is the largest number of instructions accumulated at any
of the displayed addresses, and the aster isks represent· the bar
graph of relative instruction frequencies, scaled according to the
maximum value mmmm. The address range is automatically scaled over
64 different address slots (aaaa, bbbb, ,zzzz, above), with a
maximum of 64 asterisks in any particular bar of tne graph.

Given the above display, the "hot spot". is around the address
range xxxx to ZZZZ. In this case, type either of the following
commands to reinitialize the HIST utility:

C. INITIAL
Ciiii

All Information Presented Here is Proprietary to Digital Research

45

SID User"'s Guide 4.2 The HIST utility

Then the HIST initialization prompt and response follow, as shown
below.

TYPE HISTOGRAM BOUNDS xxxx,zzzz

You can then rerun the test program using the command:

UFFFF, . COLLECT

After leaving enough time for the test program to reach "steady
state," interrupt program execution by typing a return during the
monitored execution. The display function is then reinvoked to
expand the region between xxxx and zzzz, resulting in a more refined
view of the frequently executed region.

The L command can subsequently determine the exact instructions
that are most frequently executed. If possible, the sequence of
instructions can be somewhat improved, with an overall improvement
in program performance.

4.3 The TRACE Utility

The TRACE utility obtains a backtrace of the instructions that
led to a particular break address in a progr-m under test. F'or
example, a program might have an error conditir,n that arises from a
sequence of instructions that are difficult to find under normal
testing. In this case, TRACE can collect program addresses as the
test program executes, and display these addresses and instructions
in most recent to least recent order when you request. To invoke
SID with the TRACE utility, enter the following command:

SID TRACE. UTL

The utility responds as follows:

I NI TI AL = iii i
COLLECT = cccc
DISPLAY = dddd·

In this case, the TRACE utility also prints the message:

READY FOR SYMBOLIC BACKTRACE

which indicates that the assembler/disassembler portion of SID is
present, and will disassemble instructions when the backtrace is
requested.

You can
symbol table.
the command:

then proceed to load a test program with optional
For example, you can load the DUMP program, by typing

IDUMP.COM DUMP.SYM
R

All Information Presented Here is Proprietary to Digital Research

46

SID User"'s Guide

The usual response:

"NEXT PC END"

4.3 The TRACE utility

indicates that the test program is loaded. At this point, the SID
debugger is executing in high memory, along with the TRACE utility
and the test program symbols. The test program is present in low
memory, ready for execution.

To obtain the simplest backtrace, type one of the U or T
command forms shown with the HIST utility. In particular, a U
command of the form:

U#500, . COLLECT

executes 500 (decimal) program steps, and then automatically stops
program execution. Type the following command to obtain a backtrace
to the stop address:

C.DISPLAY

This command causes TRACE to display the label, address, and
mnemonic information in the form:

label-255:
addr-255

label-254:
addr-254

label-253:
addr-253

label-OOO:
addr-OOO

opcode-255 sym-255

opcode-254 sym-254

opcode-253 sym-253

opcode-OOO sym-OOO

where label-255 down through label-OOO represent the decoded
symbolic labels corresponding to addresses given by addr-255 down
through addr-OOO, when the symbolic labels exist. Opcode-255 down
through opcode-OOO represent the mnemonic operation codes
corresponding to the backtraced addresses, and sym-255 down through
sym-OOO denote the symbolic operands corresponding to the operation
cedes, when the symbols exist. The operation codes are displayed in
the same format as the list command. Note that in this display, the
most recently executed instruction is at location addr-255, while
the least recently executed instruction is at location addr-OOO.
TRACE accounts for up to 256 instructions, which accumulate in T or
U mode. The accumula ted instruc tions are not affected by the
DISPLAY function, but are cleared by the following call to
reinitialize:

C. INITIAL

Full benefit of the TRACE utility requires concurrent use of
TRACE with pass points (see the "P" command). In particular, pass
points are first set at program locations that are of interest in
the backtrace. The program is then run to an intermediate location

All Information Presented Here is Froprietary to Digital Research

47

SID User"'s Guide 4.3 The TRACE utility

where the test begins. At this intermediate test point, use the U
command to execute the test program in fully monitored mode, with
data collection at the COLLECT entry point of TRACE. Upon
encountering one of the pass points in U mode, program execution
breaks, and you regain control in SID command mode. The DISPLAY
function of TRACE is then invoked to obtain the required backtrace
information.

As an example of this process, suppose the DUMP program is in
memory with the TRACE utili ty, as shown above. Suppose fu rther tha t
you want to view the actions of the DUMP program on the first call
to BDOS (Le., the first call from DUMP to the CP/M Basic Disk
Operating System, through location 0005). Assuming the symbol table
is loaded, type the command:

P.BDOS

which sets a pass point at the BDOS entry, with corresponding pass
count = 1. Then execute DUMP in monitored mode, collecting data at
each instruction:

UFFFF , •COLLECT

The untrace count of FFFF (65535) instructions is, of course, too
many in this case, but the assumption is that the DUMP fcogram stops
a t the BDOS call before the instruc tion count is exr.eeded (if it
does not, depress any keyboard character to force a program break) .
In this case, the DUMP program executes only a few instructions
before the BDOS call, resulting in the break information:

01 PASS 0005 .BDOS
-ZEI A=80 B=0014 D=005C H=OOOO S=0249 P.=0005 JMP CCDF
*CCDF

showing the pass count 1, pass address 0005, symbolic location BDOS,
register state, and break address. Since execution to this point
was monitored and data was collected, invoke the TRACE function:

C.DISPLAY

which results in the display:

BDOS:
0005 JMP CCDF
OlCA CALL 0005 .BDOS
01C8 MVI C,OF
01C5 LXI D,005C .FCB
01C2 STA 007C .FCBCR

SETUP:
OlCl XRA A
OlOA CALL OlCl .SETUP
0107 LXI SP,0257 .STKTOP
0104 SHLD 0215 .OLDSP
0103 DAD SP
0100 LXI H,OOOO

All Information Presented Here is Proprietary to Digital Research

48

SID User"'s Guide 4.3 The TRACE Utility

Note that in this particular case, only 11 instructions were
executed before the BDOS call, and thus the full 256 instruction
capacity had not been exceeded. In fact, the backtrace shown above
gives the comp,lete history of the DUMP execution, from the first
instruction at address 0100. You can then proceed to execute the
DUMP program further by simply typing:

UFFFF, . COLLECT

with a break at the following call on BDOS. Given that the program
execu tion is to stop on the 20th call on BDOS, type the pass
command:

P.BDOS,#20

to set the pass count at 20 (decimal). Enter the command:

UFFFF, • COLLECT

if intermediate passes are to be traced. Alternatively, type the
command:

-UFFFF , . COLLECT

to disable intermediate traces. In 2ither case, execution stops at
the 20th BDOS call, and you can enter the display command~

C. DISPLAY

to view the trace to this p&rticular BDOS call.

Abort long typeouts by typing any keyboard character during the
display. The ctl-S key freezes the display during output. Finally,
recall that you can issue "C.DISPLAY" any number of times to
reproduce the back trace since the command does not clear the TRACE
buffe r.

You can also use the TRACE utility when the disassembler module
is not present. In this case, the instruction addresses are listed
in the trace, while the mnemonics are not included. For example,
the sequence of commands shown below loads the TRACE utility without
the disassembler module, followed by the DUMP program without its
symbol table:

SID
-A
ITRACE.UTL
R
IDUMP.COM

Load the SID Program
Remove the Disassembler
Ready the TRACE Utility
Read the TRACE Utility
Load the DUMP Program

In this case, the TRACE utility prints the following sign-on
message:

"_A" IN EFFECT, ADDRESS BACKTRACE

All Information Presented Here is Proprietary to Digital Research

49

SID User"'s Guide 4.3 The TRACE utility

The back trace information is subsequently displayed in the format:

addr-255 addr-254 addr-253 • addr-248
addr-247 addr-246 addr-245 . • • addr-240

addr-007 addr-006 addr-005 . • • addr-OOO

All Information Presented Here is Proprietary to Digital Research

50

Section 5
SID Sample Debugging Sessions

This section contains several examples of SID debugging
sessions. The examples are based upon a "bubble sort" of a byte
value list. The bubble sort program is first listed in its
undebugged form. A series of test, edit, and reassembly processes
are shown which result in a final debugged program. In each case,
the operator interaction with CP/M, ED, MAC, or SID is shown in
normal type, while comments on each of the processes are given
alongside in italics.

The dialogue that follows contains the following sequence of
opera tions:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(1')
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)

TYPE SORT. PRN
TYPE ~ORT .SYM
TYPE SORT .H~X

SID SORT.HEX SORT.SYM
ED SORT.ASM
MAC SORT
TYPE SORT .SYM
SID SORT.HEX SORT.SYM
ED SORT .ASi·1
MAC SORT
SID SORT.HEX SORT.SYM
ED SORT.ASM
MAC SORT
LOAD SORT
SID SORT.COM SORT.SYM
SID SORT.COM SORT.SYM
SID SORT.COM SORT.SYM
SID SORT.COM SORT.SYM
ED SORT.ASM
MAC SORT
SID SORT.HEX SORT.SYM
ED SORT.ASM
MAC SORT
SID SORT.HEX SORT.SYM
ED SORT.ASM
MAC SORT $+S

Lists initial SORT program.
Shows the SORT symbol table.
Shows the SORT HEX file.
1st debugging session.
1st re-edit of SORT program.
1st reassembly of SORT.
Shows new symbol table.
2nd debugging session.
2nd re-edit of SORT program.
2nd reassembly of SORT.
3rd debugging session.
3rd re-edit of SORT.
3rd reassembly of SORT.
Create a COM file for SORT.
4th debugging session.
Re-entry to SID for debugging.
Re-entry to SID for debugging.
Re-entry to SID for debugging.
4th re-edit of SORT.
4th reassembly of SORT.
5th debugging session.
5th re-edit of SORT.
5th reassembly of SORT.
6th debugging session.
6th (last) re-edit of SORT.
6th (last) reassembly.

Following the debugging sessions, the final corrected SORT program
is given in its debugged form.

All Information Presented Here is Proprietary to Digital Research

51

SID User"'s Guide 5 SID Sample Debugging Sessions

Three separate debugging sessions are then shown that use the
HIST and TRACE utilities to monitor the execution of the tested SORT
program. The operations shown here include:

(27)
(28)
(29)

SID HIST.UTL
SID TRACE. UTL
SID

Load the HIST utility.
Load the TRACE utility.
Load SID, TRACE follows.

As a final example, a simple program that calls the BDOS is
listed, followed by a single debugging session. This particular
example shows the actions of SID when subroutines are traced,
followed by calls on the CP/M BDOS. The operations in this case
are:

(30)
(31)

TYPE IO.PRN
SID IO.HEX IO.SYM

List the 10 program
Enter SID for debugging

All Information Presented Here is proprietary to Digital Research

52

SID User"'s Guide

~TYPE SORToPRN

5 SID Sample Debugging Sessions

SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE
ELEMENTS OF 'LI ST' ARE PLACED INTO
DESCENDING ORDER USING BUBBLE SORT

0100 ORG 100H ;BEGINNING OF TPA
0000 = REBOOT EQU OOOOH ;CP/M REBOOT LOCATION

,
0100 213801 SORT: LXI H,SW
0103 3601 MVI M,l ; SW = 1
0105 213901 LXI H, I ; INDEX TO SORT LIST
0108 3600 MVI M,O ; I = 0

, COMPARE I WITH ARRAY SIZE
COMP: ;HL ADDRESS INDEX I

010A 3A6201 LOA 1'1 ;LENGTH OF VECTOR
0100 BE CMP M ;CHECK FOR N=I
OlOE C21901 JNZ CONT ;CONTINUE IF UNEQUAL

END OF ONE PASS THROUGH LIST
0111 213801 LXI H,SW ;1'10 SWITCHES?
0114 7E MOV A,M ;FILL A WITH SW
0115 B7 ORA A ;SET FLAGS

, END OF SORT PROCESS, REBOOT
0116 C30000 STOP: JMP REBOOT ;RESTART CCP

, CONTINUE THIS PASS
CONT:

ADDRESSING I, SO LOAO LIST(I)
0119 SF MOV E,A ;LOW(I) TO E REGISTER
OIlA 1600 MVI 0,0 ; HIGH (I) = 0
OIlC 215A01 LXI H, LIST ; BASE OF LI ST
OIlF 19 DAD 0 ;ADDR LIST(I)
0120 7E MOV A,M ;LIST(I) IN A REGISTER
0121 23 INX H ;ADDR OF LIST(I+l)
0122 BE CMP M ;LIST(I) :LIST(1+1)
0123 DA3101 JC INCI ;SKIP IF PROPER ORDER

CHECK FOR LIST(I) = LIST(I+1)
0126 CA3101 JZ INCI ;SKIP IF EQUAL

ITEMS ARE OUT OF ORDER, SWITCH
0129 4E MQV C,M ;OLD LIST(I+1) TO C
012A 77 MOV M,A ;NEW LIST*I+1) TO M
012B 2B DCX H ;ADDR LIST(I)
012C 71 MOV M,C ;NEW LIST(I) TO M

0120 213801 LXI H,SW ; SW ITCH COUNT IS SW
0130 34 INR M ;sw = sw + 1

;
INCI: ;INCREMENT INDEX I

0131 213901 LXI H, I
0134 34 INR M ;1 = I + 1
0135 C30A01 JMP COMP ; TO COMPARE I WITH N_

o

1

, DATA AREAS
0138 SW: OS 1 ; SW ITCH COUNT
0139 I: OS 1 ; INDEX
013A OS 32 ;16 LEVEL STACK

STACK:

015A 0503040A08LIST: DB 5,3,4,10, 8,130,10,4
0162 08 N: DB $-LI ST ; LENGTH OF LIST
0163 END

All Information Presented Here is Proprietary to Digital Research

53

SID User's Guide 5 SID Sample Debugging Sessions

Next free address is 163, Program Co unter is 100

and end of TPA is 5587

015A LIST
0116 STOP

0131 INCI
015A STACK

0139 I
0100 SORT

Start SID with HEX and SYM files

o TYPE SORT.SYM
~10A COMP 0119 CONT

0162 N 0000 REBOOT
0138 SW

f3\ TYPE SORT.HEX
~10010000213801360121390136003A62018EC21997

:10011000012138017E87C300005F1600215A011982
:100120007E238EOA3101CA31014E772871213801AO
:080130003421390134C30A0136
:09015A000503040A08820A0408E6
:0000000000

~ SID SORT.HEX SORT.SYM
SID VERS 1.4
SYMBOLS
NEXT PC END
0163 0100 5587
#D. LIST, +=N-l
015A: 05 03 04 OA 08 82 .
0160: OA 04 .. Display initial list of items to sort

#G •. STOP Execute test program until "STOP" symbol address encountered

Now at the STOP address, examine data list:

where is the program counter?
reset PC back to beginning and try again with trace on:

*0116 . STOP
#O.LIST,+=N-l
015A: 05 03 04
0160: OA 04
#XP
P=0116 100
ITlO

OA 08 82 . Hasn't changed!

A=08 8:0000 0=0008 H=0163 S=0100 P=0131 LXI H,0139.I
Looks lil<'1! we've discOliered a bug! We have entered at "CONT"
with N' in· the accumUlator, rather than I, which is expected!

SW=l

1=0

No, so (;... npm "
LIST(i), LIST(i+ 1)E,A

0,00
H,015A .LIST
o
A,M.N What's this?
H Why did we
M=58 fetch N?
0131 .INCI

A=08 8=0000 D=0008 H=0139 S=0100 P=01J9 MOV
A=08 8=0000 0~0008 H=0139 S=0100 P=011A MVI
A=08 8=0000 0~0008 H=0139 S=0100 P=OllC LXI
A=08 8=0000 0=0008 H=015A S=0100 P=011F DAD
A=08 8=0000 0=0008 H=0162 S=0100 P=0120 MOV
A=08 8=0000 0=0008 H=0162 S=0100 P=0121 INX
A=08 8=0000 0=0008 H=0163 S=0100 P=0122 CMP
A=08 8=0000 0=0008 H=0163 S=0100 P=0123 JC

A=OI 8=0000 0=0008 H=0138 S=0100 P=0100 LXI H,0138 .SW
A=OI 8=0000 D=0008 H=0138 S=0100 P=0103 MVI M,OI .SW
A=Ol 8=0000 0=0008 H=0138 S=0100 P=0105 LXI H,0139. I
A=Ol 8=0000 0=0008 H=0139 5=0100 P=0108 MVI M,OO.I

A=Ol 8=0000 0=0008 H=0139 S=0100 P=010A LOA 0162.N N=I?
A=08 8=0000 0=0008 H=0139 S=0100 P=0100 CMP M=OO.I
A=08 8=0000 0=0008 H=0139 S=0100 P=010E JNZ 0119 .CONT

COMP:

----I
CONT:
----I
----I
----I
----I
----I
-- -- I
----I
C-M-I

INC I:
C-M-I

"0134
#GO

f5\ ED SORT .ASM Back to the editor to make the changes
\:!.)..JlA Bring all the text into memory

*V Enter Verify mode for line numbers, then find the place to change
1: *FAODRESSING

28: *OLT
28:, ADDRESS ING I. SO LOAD LI ST(I) Delete the line
28: *KT
28: MOV E,A ;LOW(I) TO E REGISTER
28: *1
28: LOA ;LOAO I TO A REGISTER Insert the
29: ctl-Z change
29: *E Terminate the editing session

All Information Presented Here is proprietary to Digital Research

54

SID UseI.'~s Guide 5 SID Sample Debugging Sessions

o MAC SORT
CP/M MACRO ASSEM 2.0
0166
001H USE FACTOR
END OF ASSEMBLY

Re-assemble the SORT program

(;\7 Here's the symbol table:\..:..l TYPE SORT.SYM
010A COMP 0119 CONT 013C I 0134 INCI
0165 N 0000 REBOOT 0100 SORT 0150 STACK
013B SW

0150 LI ST
0116 STOP

o SID SORT.HEX SORT.SYM
SID VERS 1.4
SYMBOLS
NEXT PC END
0166 0100 55B7
,P.STOP
IG

01 PASS 0116 .STOP
----- A=7C B=0008 0=0081

*0000 .REBOOT
1H=N
0082 #130
lO.LIST,+7
0150: 03 04 05
0160: 08 OA OA 04·08
III SORT. ;-lEX
#R
NEXT r'C END
0166 0100 55B7
IXP
P=0100
ifP
01 0116 .STOP
,fP.SORT,FF
#G

Let's try again, load the HEX and SYM. files

Set a "pass point" at STOP to prevent reboot

Start (unmonitored) execution

We made it to the STOP label, check values
H=013B 5=0100 P=0116 JMP 0000 .REBOOT

What's the value of the byte variable N?
130? Very strange! How did that happen?
Oh well, let's loo~ at the data values:

They .:Jre almost sorted, looks like we have
some trouble near the end of the vector,
let's reload the machine code and try
again:

Program counter remains at 0100, "'>l.at
are the act~-. pa.~- :.')ints?
The one at STOP rem:Iins set, let's also
monitor the SORT loop point, but not
break right away.

What active pass points exist?
Wait a .minute - referring back to the
original listing, it appears that the code
preceding the STOP label is incomplete:
there should be a conditional jump back to
the SORT label - maybe that's why the program
never makes it back!

FF PASS 0100 .SORT Here's the first time through S'JRT
_____ A=7C B=0008 0=0081 H=013B '5=0100 P=0100 LXI H,013B .SW

01 PASS 0116 . STOP It stopped immediately! It doesn't look good!
_____ A=79 B=0008 0=0081 H=013B S=0100 P=0116 JMP 0000 .REBOOT

*0000 .REBOOT We know there should have been several loops
IISORT .HEX through the SORT label, since the data is
IR unordered. Let's try again - reload the code
NEXT PC END (note that the reload is necessary here, since
0166 0100 55B7 the data is initialized in the code area).
IP
01 0116 . STOP
FE 0100 .SORT
,GO

All Information Presented Here is Proprietary to Digital Research

55

SID User"'s Guide 5 SID Sample Debugging Sessions

Oh well, back to the editor for a
quick [ix. Append all text (# A), and
enter Verify mode (V). Then [ind STOP.

REBOOT ;RESTART CCP
Go up one line (-)

SORT PROCESS, REBOOT
and enter insert mode (I)

;CONTINUE IF NOT EQUAL

JMP

END OF

END OF SORT PROCESS, REBOOT
OK, we made the change, now re-assemble

JNZ CONT
; ctl-Z, and "return"
E

wait, I [argot the ctl-Z. now rve got the E command in
*- my input bu[fer. Type the ctl-Z, go back up one line,

E delete the E, then end the edit
*KT

(DEO SORT.ASM
*#AY

1: *FSTOP:
24: *OLT
24: STOP:
24: *
23: ,
23: * I
23:
24:
25:
25:
25:
25:
25:
25:
25: *E

Set a pass point at sort, with a high count.

Invoke the macro assembler with SORT as input.

SOR 1. SYM Here we go again, I sure hope this is the
last time (but it probably isn't).

® MAC SORT
CP/M MACRO ASSEM 2.0
0159
001H USE FACTOR
END OF ASSEMBLY

~IO SORT.HEX
::>10 YERS 1.4
SYMBOLS
NEXi PC END
0169 0100 55B7
.iP .SORT,FF

P.STOP
iiP
FF 010G .SORT
01 011Q .STOP
#G

also set a pass point at STOP with count 1, this
will stop the first time through

Expcute the test program

FF PASS 0100 .SORT First time through SORT label:

----- A=OO B=0QOO 0=0000 H=OOOO S=0100 P=0100 LXI H,013E .SW
01 PASS 0119 .STOP Stopped again! Arrggh!

-Z-E- A=OO B=006A 0=0007 H=013E S=0100 P=0119 JMP 0000 .REBOOT·
*0000 .REBOOT

Let's look at some values:

display initial values:

Here's where the switch occurs, let's set a pass
point here and watch the data addresses:

Let's take a look at the process of switching
two data items - the code appears down below
the "CO NT" label, so we'll disassemble a
portion o[the program .

. LIST

ODF . I
E,A
0,00
H,Ol60

°A,M
H

H=N
0008 #8 N=8, looks be tter than last time
#D.LIST,+=N
0160: 01 01 03 04 04 05 07 08 08 These values look a bit
#ISORT .HEX strange?! Try again:
#R
NEXi PC END
0159 0100 55B7
#O.LIST,+=N-l Machine code reloaded,
0160: 05 03 04 OA 08 82 OA 04 .
#L.CONT
CONT:

oue LOA
OUF MOY
0120 MVI
0122 LXI
0125 DAD
0126 MOY
0127 rNX
0128 CMP M
0129 JC 0137 .INCI
012C JZ 0137 .INCl
012F ~jOV C,M

!tP12F,FF
#P
FE 0100 .SORT
01 0119 .STOP
FF 012F

All Information Presented Here is Proprietary to Digital Research

56

5 SID Sample Debugging SessionsSID User"'s Guide

,G

FE PASS 0100 . SORT Here's the (irst P<1SS through SORT
-Z-E- A=OO 8=006A 0=0007 H=013E 5=0100 P=0100 LXI H,013E .5W

FF PASS 012F Switching at address 161, looks OK!

----I A=05 8=006A 0=0000 H=0161 5=0100 P=012F MOV C,M
FE PASS 012F Switching at 162, looks good.
----I A=05 8=0003 0=0001 H=0162 5=0100 P=012F MOV C.M

FO PASS 012F 164 is the next to switch. looks good.
----I A=OA 8=0004 0=0003 H=0164 5=0100 P=012F MOV C.M

FC PASS 012F 166 is probably the next one.
---E- A=82 8=0008 0=0005 H=0166 5=0100 P=012F MOV C.M

*0130 So what's wrong? This section o(
II code seems to work.

Clear all the pass points, and reload
the machine code (or another test.

.LIST

Here's the code where the element
switching occurs, let's watch the

JJ.rogram switch the (irst element:
.INCI
. INC I

H.0160
o
A.M
H
M
0137
0137
C.~I

M.A
H

tt-P
, ISORT. HEX
IIR
NEXT PC END
0169 0100 5587
NL.CONT+5

0121 NOP
0122 LXI
0125 DAD
0126 MOV
0127 INX
0128 C,~P

0129 JC
012C JZ
012F MOV
0130 MOV
0131 OCX

#G.129

Well, that went nicely - elements switched, SW=l

0137.INCI
0137 .INCI
C.M
M,A
H
M.C .LIST
H,013E .5W
M=Ol .SW

Proceed to the INCr label

*0129 OK, here we are, ready to test and
IITlO switch. i(necessary.
----I A=05 B=OOOO 0=0000 H=0161 5=0100 P=0129 JC
----I A=05 8=0000 0=0000 H=0161 5=0100 P=012C JZ
----I A=05 B=OOOO 0=0000 H=0161 5=0100 P=012F MOV
----I A=05 B=0003 0=0000 H=0161 5=0100 P=0130 MOV
----I A=05 B=0003 0=0000 H=0161 5=0100 P=0131 oCX
----I A=05 B=0003 0=0000 H=b160 S=0100 P=0132 MOV
----I A=05 B=0003 0=0000 H=0160 5=0100 P=0133 LXI
----I A=05 8=0003 0=0000 H=013E 5=0100 P=0136 INR

*0137 .INCI .
1I0.LIST .+7
0160: 03 05 04 OA 08 82 OA 04 .
#H= I ~ The data looks good at this point.
0000 .REBOOT "0
I/G, . I NC I

*0137 .INCI Here we are, let's look at the data:
1I0.LIST,+7
0160: 03 05 04 OA 08 82 OA 04 .
#H=I
0000 .REBOOT liO Looks good, trace past the label and break
IH
----- A=05 B=0003 0=0000 H=013E 5=0100 P=0137 LXI H.013F.I

*013A
#G,.INCI Go to the INCr label again.

Looks good, proceed past INcr

Here we are (again), how's the data?

And loop again . . .

*0137 .INCI
liD. LIST. +=1
0160: 03 04 ..
n

---E- A=05 B=0004 0=0001 H=013E 5=0100 P=0137
*013A
liG •. INCI

LXI H.013F. I

*0137 .INCI
#o.LIST,+=I
0160: 03 04 05
IiG •. 50RT,.5TOP

Here we are (again), how's the data?

Looks good. this is getting monotonous, let's
go (or it! Stop at either SORT or STOP

*0119 . STOP Egad! Here we at the the STOP label. Why
lio.LIST,+=I aren't we making it back to SORT?
0160: 01 01 03 04 04 05 07 08 08 .
Tsk! Tsk! The data's messed up again.

All Information Presented Here is Proprietary to Digital Research

57

SID User's Guide 5 SID Sample Debugging Sessions

#ISORT .HEX Let's reload and try again.
#R
NEXT PC END
0169 0100 5587
#Ll36,+3

0136 INR M Here's where the swft-ch count is incremented
INCI;

0137 LXI H,013F.r
013A

#G,136 Execute the program and break
at SW = SW + 1

*0136
#O.LIST,+=I
0160: 03 .
#U
----I A=05

"0137 .INCI
ilP136
#G

Look at data values:

Use U to move past break address
8=0003 0=0000 H=013E S=0100 P=0136 INR M=Ol .SW

. It's actually easier to use the pass point feature
if we want to view the action of the INR M,
since the P command stops execution after the
pass point is executed.

value so the program
4 is a good number.

Data values look good.
Let's change N to a smaller
doesn't loop so many times:
End input with "."
"GO" to pass point

01 PASS 0136
----I A=05 8=0004 0=0001 H=013E S=0100 P=0136

*0137 .INCI SW = 2, looks good.
iiO.LIST,+=I
0160: 03 04
#S.N
0163 08 4
0169 OA
#G

INR M=02 .SW

H,013F .;
M=03 .1
OlOA ,COMP

SW value at this point is 4.
Let's watch it run for a few steps:

A=OA 8=0008 0=0003 H=013E S=0100 P=0137 LXI
A=OA 8=0008 0=0003 H=013F S=0100 P=013A INR
A=OA B=0008 0=0003 H=013F S=0100 P=0138 JMP

01 PASS 0136 Here we are, switch value is incremented:
----I A=OA 8=0008 0=0003 H=013E S=0100 P=0136 INR M=03 .SW

"0137 .INCI Stopped at next instruction.
#D.LIST,+=I '
0160: 03 04 05 08 Data values so for.
#H=SW
0004 #4
#TFFFF

COMP:
A=OA B=0008 0=0003 H=013F S=0100 P=010A LOA
A=04 B=0008 0=0003 H=013F S=0100 P=0100 eMP

-Z-EI A=04 B=0008 0=0003 H=013F S=0100 P=OlOE JNZ
-Z-EI A=04 B=0008 0=0003 H=013F S=0100 P=Olll LXI
~Z-EI A=04 B=0008 0=0003 H=013E S=0100 P=0114 MOV
-Z-EI A=04 B=0008 0=0003 H=013E S=0100 P=0115 ORA

A=04 B=0008 0=0003 H=013E S=0100 P=0116 JNZ

0168 ,N
f4=04 . I
OllC .CON1
H,013E ,S\<,
A,M .S\oI
A
OIlC .CONT

CONT:

*OllF
#GO

A=04 B=0008 0=0003 H=013E S=0100 P=OllC LOA 013F .1

Very interesting! We seem. to be
_qoina lJQck to "CDNT" rafner. than "SORT."Let's go DaCK to the eaftor an it It up.

"re turn" again.
END OF SORT PROCESS, REBOOT

End the edit

ORA

This is a simple change: append all text, enter line
verify mode, find "ORA" and make the change:

A ;SET FLAGS
"return" to move down one line

JNZ CONT ;CONTINUE IF NOT EQUAL
"SCONT!ZSORTIZOLT Substitute SORT for CONT

JNZ SORT ;CONTINUE IF NOT EQUAL
"return" to move down another line

~EO SORT.ASM
"#AVFORA

22: *OLT
22:
22: *
23:
23:
23:
23: *
24:
24: "
25:
25: "E

All Information Presented Here is Proprie~ary to Digital Research

58

SID User""s Guide 5 SID Sample Debugging Sessions

@MAC SORT
CP/M MACRO ASSEM 2.0
0169
00lH USE FACTOR
END OF ASSEMBLY

Callout MAC for another assembly.

@LOAD SORT

FIRST ADDRESS 0100
LAST ADDRESS 0168
BYTES READ 0047
RECORDS WRITTE~ 01

Just for a little variation, we'll create a
SORT.COM file for testing under SID.

Set a pass point at STep, as before
and one at SORT with l.J pass count of 255.
CO with pass trace disabled.

Unmonitored CO
Oops! We didn't get control back, there must
be an infinite loop - we can ge t control back by

63K CP/M '1ERS 1.3 forcing a front panel RST 7 (iT.terrupt 7),
or simply bail-out with a cold start.

®s ID SOR T. COM SOR T. snl
SID VERS 1. 4 Let's start again, but be a little more selective
SYMBOLS in setting breaJ..--points.
NEXT PC END
0180 0100 55B7
dP.STOP
itP.50RT,FF
iI-G

~SID SORT.COM SORT.SYM
SID VERS 1.4 Back to SID, using the COM and SY At files
SYMBOLS
NEXT PC END
0130 0100 5587
'iP .STOP Set a pass point at STOP to prevent reboot
#D.LIST,+=N.. 1 Here's the original data:
0160: 05 03 04 OA 08 32 OA 04 .
'iG

There's a good possibility that we're running off
the end of the LIST vector into the variable N,
let's stop at the COMP label and watch the end test.

many!

How's the data?

*010A .COMP
ilT5

01 PA55 0100 Stopped ~with 255 passes through SORT - t09
----- A=Ol B=006A D=OOFr H=013E S=0100 P=OlOD LXI H,013t

*0103
#D.LIST,+=N-l
0160: 03 .
#H=N Hmmm ... looks like N was destroyed.
0000 .REBOOT #0
#H=I
0000 .REBOOT 10
flG,.COMP

-Z-EI
-Z-EI
-Z-EI

*0115
#GO

A=Ol B=006A D=OOFF H=013F 5=0100 P=010A LOA 0168 .N
A=OO B=006A D=OOFF H=013F S=0100 P=010D CM? M=OO .1
A=OO B=006A D=OOFF H=013F 5=0100 P=010E JNZ 011C .CONT
A=OO B~006A D=OOFF H=013F 5=0100 P=Olll LXI H,013E .5W
A=OO B=006A D=OOFF H=013~ 5=0100 P=0114 MOV A,M .5W

Hey, this isn't gGing to work! We'll be comparing
LIST(N-l) with LIST(N;, but the last LIST element is
at LIST(N-l). Let's try a quick fir.

All Information Presented Here is Proprietary to Digital Research

59

SID User"'s Guide 5 SID Sample Debugging Sessions

8=0004 0=0002 H=013E S=OlOO P=0114 MOV A,M
Push the "return" key to abort early.
Value of N is still 4 (that's nice!)
Value oj [is currently 2. This program
should have stopped, but didn't for some
reason.

~SlD SORT.COM SORT.SYM
~O 'VERS 1.4 Let's re-enter SID with a clean memory

SYM80LS image, and look at the machine code
NEXT PC END below the "CaMP" label.
0180 0100 5587
#L. CO~lP
COMP:

OlOA LOA 0168.N Here's the reference to N - let's change this
0100 CMP M to N-l with a "hot patch" in memory, to see
OlOE JNZ onc .CONT if it works, then we'll go back to the
0111 LXI H,013E .SW original source program and make the
0114 MOV A,M necessary changes. We're not using the area

ilAlOA of memory starting at 0200, so patch a jump
OlOA JMP 200 over the LDA instruction, and ju-up some
0100 patch code.
!lA200
0200 LOA. N Replace the LDA instruction which now has JMP 200.
0203 OCR A N-l in accumulator (N better be 2 or larger!)
0204 CMP M and compare with memory (H L addresses [),
0205 JNZ . CONT jump to caNT if continuing, otherwise
0208 JMp III jump back to the next instruction in sequence
020B after the patch.
!lP205, FF Set a pass point to watch the JNZ take place
UP.STOP and catch any returns to the CCP.
#P1ll,F1' Set a pass point at the patch return address.
#S. N Reduce the size of N for this test to 4.
0168 08 4
0169 00
#G Everything is ready, let's go ..•

FF PASS 0205 First pass through the patr.h code:
---EI A=03 B=OOOO ~'OOOO H=013F S=OlOO P=0205 JNZ OllC .CONT

FE PA5S 0205 Went to caNT that time, second pass:
----I A=03 8=0003 0=0000 H=013F S=OlOO P=0205 JNZ OllC .CO~I

FO PASS 0205 Went to caNT again, next pass:
----I A=03 B=0004 0=0001 H=013F S=0100 P=0205 JNZ OllC .CONT

FC PAS5 0205 And so-forth:
-Z-EI A=03 8=0004 0=0002 H=013F 5=0100 P=0205 JNZ OllC .U;::T

1'1' PASS Olll Must be tile end oj one cycle:
-Z-EI \=03 B=0004 0=0002 H=013F 5=0100 P=Olll LXI H,013E .SW

FB PASS 0205 Now back through the patch code:
---EI A-03 8=0004 0=0002 H=013F 5=0100 P=0205 JNZ OllC .CONT

FA PASS 0205
----I A=03 8=0004 0=0000 H=013F 5=0100 P=0205 JNZ OllC .CONT

1'9 PA5S 0205
----I A=03 B=0004 0=0001 H=013F 5=0100 P=0205 JNZ Olle .CONT

1'8 PA5S 0205
-Z-EI A=03 8=0004 0=0002 H=013F S=OlOO P=0205 JNZ OllC .CONT

FE PASS Olll
-Z-EI A=03 8=0004 0=0002 H=013F 5=0100 P=Olll LXI H,013E .SW

*0114 This is getting monontonous again, so
#0. LI 5T, +=N-l push the "return" key to stop the action.
0160: 03 04 05 OA Data looks good, T11T1 in monitored mode:

-UFFFF
-Z-EI A=03

*0138
#H=N
0004 64
#H=I
0002 #2

All Information Presented Here is proprietary to Digital Research

60

T SID t'ser"s Guide 5 SID Sample Debugging Sessions

~SIO SORT.COM SORT.SYM
SID VER5 1.4 Let's try another approach. Suppose we
SYMBOLS constwft a r.eallv trivial f.ased· we'll set
NEXT PC END N =;: • wo ttems to sort, an
0180 0100 5587 LIST(O) = 0, LIST(1) = 1
15.N
0168 08 2
0169 00 .
!l5.LI5T
0160 05 0
0161 03 1
0162 04

Ol3F . I
E,A
0,00
H,0160 .LI5T
o
A,r~

H
M=04
0137 .INCI

Ol3F . I
E,A
0,00
H,0160 .LI5T
o
A,M .LI5T
H
~·1=01

0137 .INCI

H,013F . I
M=OO .1
010A .COMP

0163 .N
M=Ol . I
OllC . CONT

H,013F .1
M=Ol . I
010A .COMP

A=OO 8=0000 0=0000 H=OOOO 5=0100 P=OlOO LXI H,013E .5W
A=OO 8=0000 0=0000 H=013E 5=0100 P=0103 MVI M,Ol .5W
A=OO 8=0000 0=0000 H=013E 5=0100 P=0105 LXI H,013F. I
A=OO 8=0000 0=0000 H=013F 5=0100 P=0108 MVI M,OO.I

A=OO 8=0000 0=0000 H=013F 5=0100 P=OlOA LOA 0168 .N
A=02 8=0000 0=0000 H=013F 5=0100 P=0100 CMP M=OO.I
A=02 8=0000 0=0000 H=013F S=0100 P=010E JNZ 011C .CONT

Things are ready to go, run completely traced:

----I
CONT:
----I A=02 8=0000 0=0000 H=013F 5=0100 P=011C LOA
----I A=OO 8=0000 0=0000 H=013F 5=0100 P=OllF MOV
----I A=OO 8=0000 0=0000 H=013F 5=0100 P=0120 MVI
----I A=OO 8=0000 0=0000 H=013F 5=0100 P=0122 LXI
----I A=OO 8=0000 0=0000 H=0160 5=0100 P=0125 DAD
----I A=OO 8=0000 0=0000 H=J160 5=0100 P=0126 MOV
-- --1 A=OO 8=0000 0=0000 H=0160 5=0100 P=0127 INX
----I A=OO 8=0000 0=0000 H=0161 5=0100 P=0128 CMP
(·ME- A=OO 8=0000 0=0000 H=0161 5=0100 P=0129 JC

: NC I: Not switched!
C-ME- A=OO 8=0000 0=0000 H=0161 5=0100 r~0137 LXI
C-ME- A=OO 8=0000 0=0000 H=013F 5=0l00 P=013A INR
C---- A=OO 8=0000 0=0000 H=013F 5=0100 P=0138 JMP

COMP:
C---- A=OO 8' JOOO 0=0000 H=013F 5=0100 P=OlOA LOA
C---- A=02 8=0000 D=OOOO H=013F 5=0100 P=OlOO CMP
----I A=02 8=0000 0=0000 H=013F 5=0100 P=010E JNZ

CONT:
----I A=02 8=0000 0=0000 H=013F 5=0100 P=OllC LOA
----I A=Ol 8=0000 0=0000 H=013F 5=0100 P=OllF MOV
----I A=Ol 8=0000 0=0001 H=013F 5=0100 P=0120 MVI
----I A=OI 8=0000 0=0001 H=013F 5=0100 P=0122 LXI
----I A=Ol 8=0000 0=0001 H=0160 5=0100 P=0125 DAD
----I A=Ol 8=0000 0=0001 H=0161 5=0100 P=0126 MOV
----I A=01 8=0000 0=0001 H=0161 5=0100 P=0127 INX
----I A=01 8=0000 0=0001 H=0162 5=0100 P=0128 CMP
C-M-- A=Ol 8=0000 0=0001 H=0162 5=0100 P=0129 JC

INCI: Not switched (again)!
C-M-- A=Ol 8=0000;u-vuOl H=0162 5=0100 P=0137 LXI
C-M-- A=01 8=0000 0=0001 H=013F 5=0100 P=013A INR
C---- A=Ol 8=0000 0=0001 H=013F 5=0100 P=0138 JMP

COMP:
C---- A=Ol 8=0000 0=0001 H=013F 5=0100 P=OlOA LOA 0168 .N
C---- A=02 8=0000 0=0001 H=013F 5=0100 P=0100 CMP M=02 . I
-Z-EI A=02 8=0000 0=0001 H=013F 5=0100 P=010E JNZ OllC .CONT
-Z-EI A=02 8=0000 0=0001 H=013F 5=0100 P=0111 LXI H,013E .5W
-Z-EI A=02 8=0000 0=0001 H=013E 5=0100 P=0114 MOV A,M .5W
-Z-EI A=Ol 8=0000 0=0001 H=013E 5=0100 P=0115 ORA A

A=Ol 8=0000 0=0001 H=013E 5=0100 P=0116 JNZ 0100 .50RT
No items wen! switched - SW not set to O!

A=Ol 8=0000 0=0001 H=013E 5=0100 P=OlOO LXI H,013E .SW
50RT:

COMP:

P.STOP
HFFFF

*0103

All Information Presented Here is proprietary to Digital Research

61

SID User"'s Guide 5 SID Sample Debugging Sessions

@ED SORT.ASM
*#AVFSORT: I ZOL T

8: SORT: LX I
8: *

H,SW
Back to the editor- change the
entry code to initialize SlY

SOR T. SYM
I'.'e'ye {ixed the SlY initialization problem, which
should halt the program at the proper time, but
we may still have a problem with the end of
LIST test (remember that "hot patch"?).
Here's the initial data:

OA 08 82 OA 04 08 .

LXI

MVI
STA

MVI
*2S1!ZO!ZOLT

rWI o

1 FIRST TIME THRU

Re-<lssemble, again

;SW

;sw
;swM,l

M,O

H,SW

A,1
SW

7:
7· *2
9 :
9 :
9 :
9: *
3: SORT:
8: *1
8:
9 :

10 :
10: *E

(20\"AC SOR T
~/M MACRO ASSEM 2.0

016E
001H USE FACTOR
END OF ASSEMBLY

r21\ [D SOR T. HEX
";{~ VERS l."~

SYMBOLS
NEXT PC END
016£ 0100 55B7
#D.LlST,+=N
0165: 05 03 04
IIG,.STOP

GO, W1monitored to the STOP (how's that for
*011E . STOP confidence?).
#D.LlST,+=N We made it, here's the data:
0165: 03 04 04 05 08 08 OA OA OB 7B 82 .
0110: E5 . Data is sorted in ascending order, but there's too
'I SOR T. HEX much of it! lYe still have the problem that N is
!If< al tered during execution.

NEXT PC END Let's reload and make sure we know what the
016E 0100 5587 orQblem is- .
iiP .SORT ::let a pass pomt at SORT, check N
IIG

Break at 0108, check value of N:

OK initially, continue the execution with G.

01 PASS ClOS .SORT Here's the first pass through SORT:
-Z-E- A=Ol B=0004 O=OOOA H=0143 S=0100 P=0105 LXI H,0143 .SW

*0108
iiH=N
0008¥8
IIG

Le t's reload and scope in on the problem:
Stop at the point where I becomes I + 1:

N has been altered, which we expected, since we
are testing LIST(N-1) against UST(N) and performing
a switch if unordered.

01 PASS 0105 .SORT IVe have passed through the data once:
----- A=75 B=002A D=007A H=0143 S=0100 P=0105 LXI H,0143 .SW

*0108
IIH=N
007B 11123 '.'
ilISORT.HEX
IIR
NEXT PC END
016£ 0100 55B7
ilG, .INCI

Go to the CONT label, then stop at INCl.

Clear all pass points.

Now, try again:

Stopped at first entry co INCl, check value of N:
N is still 8, looks good.

*013C .INCI
ilH=N
0008 118
ilG, .CONT

01 PASS 0105 .SORT Oops! T he initial pass point is still set.
----- A=OI B=002A D=007A H=0143 S=0100 P=0105 LXI H,0143 .SW

*0108
II-P
IIG,.INCI

*0121 .CONT
'G,.INCI

All Information Presented Here is Proprietary to Digital Research

62

SID User"'s Guide 5 SID Sample Debugging Sessions

;16 LEVEL STACK32

Complete the edit.

Check N: remains at 8, then
check I to compare passes: 1=0,1,2,3,4,5,6 has been
executed. We are now about to set I = 7, but the test
at COMP is "JNZ" which allows execution one too many
times (which we already know about).

Back at INCI now. Check value of N

Now a little clean-up work - there is a typo in
a comment line at address 012A in the listing:

MOV MA 'NEW LIST*I*-C-DI{!ZOLT
MOV M:A ;NEW LIST{I+i) TO M Looks better now.

We are not using the 8080 stack, so ge t rid of it.

DS

Back to the editor, change the end of LIST test
to compare I with N-1 rather than N.

LDA N ;LENGTH OF VECTOR
"return" to go to next line

CMP M ;CHECK FOR N=I
Insert the instruction before the "CMP" opcode.

DCR A ;N-l IN A REGISTER
(NOTE THAT N MUST BE 2 OR LARGER)

*2K":

*F32
*OLT

,
ctl-Z

*F*I
*OT

*FLDA
*OLT

*

1:
17:
17 :
17:
18:
18: "r
18:
19:
20:
20;
49:
49:
49:
49:
64:
64:
64:
64: ,
64: *E

"Ol3C . INcr
#H=N
0008 i/8
IP.INCI,6
#-G

Remains at 8. If we keep this up, we't! be typing
break addresses all day. We can run the next few passes
through INCI automatical1y by setting a pass count (use 6
in this case), then run with -G to disable intermediate

01 PASS Ol3C traces. We now stop 6 iterations later:
---E- A=82 B=0004 D=0006 H=0143 ·S=0100 P=013C LXI H,0144

*Ol3F
#H=N
0008 its
#H=I
0006 #6

® ED SORT.ASM
*#AV

r23l MAC SORT
~P/M MACRO ASSEM 2.0

014F
001H USE FACTOR
END OF ASSEMBLY

Re-assemble the source program.

Initial data:

~SID SORT.HEX SORT.SYM
~D VERS 1.4 Back to SID - this should be the last time!

SYMBOLS
NEXT PC END
014F 0100 55BF
#D. LI ST , +=N
0146: 05 03 04 OA 08 82 OA 04 08 .
#G,STOP

#G, .STOP
Ok, ok. Let's try it with an "address reference" to
the label STOP:

Is N ok? Yes, it's still 8.
Hole! it! The data is in ascending order, but it is
supposed to be in descending order! This will
be an easy fix.

*OllF .STOP That's better, now look at the
#D. LI ST, +=N hooray! It's finally sorted.
0146; 03 04 04 05 08 OA OA 82 08 .
#H=N
0008 #8
IiGO

data:

All Information Presented Here is Prop!: ietary to Dig .~tal Research

63

SID user"'s Guide 5 SID Sample Debugging Sessions

f25\ED
~A

*T
,
*
,
*

SORT.ASM

SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE

ELEMENTS OF 'LIST' ARE PLACED INTO

Re-assemble with the symbol table option.

; DESCENDING ORDER USING BUBBLE SORT
*SDES!ZASC!ZOLT

ASCCENDING ORDER USING BUBBLE SORT
*SCC'ZClZOLT

ASCENDING ORDER USING BUBBLE SORT
Took care of that problem.

,
*E

~~AC SORT S+S
~P/M MACRO ASSEM 2.0
014F
OOlH USE FACTOR
END OF ASSEMBLY

At this point, we have checked-out this particular SORT program using this
particular set of data items. This does not, of course, mean that the program is fully
debugged. There could be cases which are not tested properly since we have not
included all boundary conditions (the data items 00 and FF, for example, should be
included). Further, there are progmm segments which. could be incorrect, but which
have no negative effects on the program. The initiclization o[SW to the value I
before the label SORT, for example, does not affect the program, but is superrluous.
We now have a program which appears to work. but must undergo further tests before
it is considered Q production program.

All Information Presented Here is Proprietary to Digital Research

64

