L

DIGITAL RESEARCH’

Post Oftice Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M ASSEMBLER (ASM)
USER'S GUIDE

COPYRIGHT (c¢) 1976, 1978

DIGITAL RESEARCH

Copyright (e} 1976, 1978 by Digital Rescarch, Al rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetie,
optical, chemical, manual or otherwise, without the prior
written permission of Dig ial Research, Post Office Box 579,
Pacific Grove. California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

Section

lll
26
3‘

7.

mIm 65800000020 ssNAasasnabastaDTFoRTsDBeanssS
PROGR2M FORMATucceeccessnacscosacncnnanaconana
PORMING THE (PERAND ..scscevscnccnccccnncnsancnsnusna
3.1. L&mls 560646550 USsDaaBDadDEAaSTEAnIASIIASSIOSOIEssavessE
3,2, NUmeric CONStantsS ..cessceacvecanascascssssssas
J.3. Reserved WOLAS sececanscssacssncnccesncscscsasn
3.4, String ConstantsS (..uvssescacsscacnconsanunans
3.5. Arithmetic and Logical OperatorS secesscessees
3.6, Precedence of OperatoOrsS cecsenceesscsacananaas
ASSEMBLER DIRECTIVES ..vaseccsceccasssscancacossasane

ﬁE Om mtecti% ea o odeotvusbadobsasastboassnssnasan

m DD Directiw emessasagsgiasEagesssoocsasoesssa

m Ea.] mrxtiw aNasadsSsOSsEBBOISOIOSNSISEDRABDSIEDSES
« The SET DireCtiVe .ccecaccccsancsccsscsnscnosas

The IF and ENDIF DirectiveS ..ccececeaccasanas

m m Dirxtiw S HaAaBgASIOLSEOSLasDsBDAESRERgAPSAS S

II’E m Directive a®6BNSSASEAANLADESOINSAaDOUTESDAAcGS
mEmIm mws " 06w U BaUBDEANAaCEssAadEQEaNsAaBdRELsOS
5.1. Jumps, Calls, and RELUINS ..uensescscscsssssae
5.2, Immediate Operand INStructionS .ceecencassaaes
5.3. Increment and Decrement INStructionsS .ceececess
5.4. Data Movement INStructionsS .eesccsssaccessanse
S5.5. Arithmetic Logic Unit Operations ,ssesesesccecs
5.6. Control INStructiOnS seceasacsssasacananssseesns
ERROR MESSAGES (eocvcsnansscsnanccasnsoncosesaosnsana
A SMLB Smslm @0 60 80AaNSQ¢EAaAcERCdLQLELE2000nananasen

g

ju—
SOOI Db D)

et
]

11
12
12
13
14
14
14
15
16
16
17

CP/M Assesbler User 's Guide

1. INTRODUCTION.

The CP/M assembler reads assembly language source files fram the diskette,
and roduces 8089 machine language in Intel hex format. The CP/M assatwbler is
initiated by typing

AM filename
or
AM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name

fil ename .ASM

which contains an 8889 assembly language source file., The first and second
forms shown above differ only in that the second form allows parameters to be

passed to the assembler to control source file access and hex and pint file
destinations,

In either case, the CP/M assembler loads, and prints the message
CP/M ASSEMBLER VER n.n

where n.n is the current version muer. In the case of the first command,
the assembler reads the source file with assumed file type “ASM* and creates
two output files

fil ename . HEX
and

filename .,PRN

the “BEX" file contains the machine code corresponding to the original program
in Intel hex format, and the *“PRN“ file contains an annotated listing showing
generated machine code, error flags, and source lines. If errors occur during
translation, they will be listed in the PRN file as well as at the console

The second cammand form can be used to redirect input and output files
fram their defaults, In this case, the "parms™ portion of the command is a
three letter group which specifies the origin of the source file, the
Qestination of the hex file, and the destination of the mint file. The form
is

filename .plp2p3
where pl, p2, and p3 are single letters

pl: A,B, ..., ¥ designates the disk name which ocontains

the source file
p2: A,B, ..., Y designates the disk name which will re-
ceive the hex file
2 skips the generation of the hex file
p3: A,B, ..., Y designates the disk name which will re-
ceive the print file

X places the listing at the console
Z skips generation of the print file
Thus, the canmand
ASM X,AAA

indicates that the souvrce file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and print (X.PRN) files are to be created also on disk A,
This form of the command is implied if the assembler is run from disk A. That

is, given that the operator is currently addressing disk A, the above command
is equivalent to

AM X
The command
AM X.ABX

indicates that the source file is to be taken from disk A, the hex file 1is

placed on disk B, and the listing file is to be sent to the console, The
command

ASM X.BZZ

takes the source file from disk B, and skips the generation of the hex and

print files (this command is useful for fast execution of the assembler to
check program syntax).

The source program format is compatible with both the Intel 8089 assembler
(macros are not currently implemented in the CP/M assembler, however), as well
as the Processor Technology Software Package #1 assembler. That is, the CP/M
assembler accepts source programs written in either format. There are certain
extensions in the CP/M assembler which make it somewhat easier to use. These
extensions are described below.

2, PROGRAM FORMAT,

An assembly language program acceptable as input to the assembler consists
of a segquence of statements of the form

line$ label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each

~embly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED oprogram), or with the
character "!" which is a treated as an end-of-line by the asserbler (thus,
multiple assembly language statements can be written on the same physical line
if separated by exclaim symbols).

The line# is an optional decimal integer value representing the source
program line nunber, which 1is allowed on any source line to malintain
compatibility with the Processor Technology format. In general, these line
numbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or
identifier:

and is optional, except where noted in particular statement types. The
identifier is a seguence of alphanumeric characters (alphabetics and numbers),
where the first character is alphabetic. Identifiers can be freely used by
the programmer to label elements such as program steps and assembler
directives, but cannot exceed 16 characters in 1length, Al)l characters are
significant in an identifier, except for the embedded dollar symbol (S) which
can be used to improve readability of the name. Further, all lower case
alphabetics become are treated as if they were upper case. Note that the ":"
following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

X xy longS$name
X: yx1: longer $namedSdata:
X1Y2 X1x2 x234$5678$9012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8088 machine operation code. The pseudo operations and
machine operation codes are described below.

The operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical
operations on these elements. BAgain, the complete details of properly formed
expressions are given below.

The comment field contains arbitrary characters following the “;* symbol
until the next real or 1logical end-of-line. These characters are read,
listed, and otherwise ignored by the assembler. In order to maintain
compatability with the Processor Technology assembler, the CP/M assembler also
treat statements which begin with a "*" in column one as comrent statements,
which are listed and ignored in the assembly process. Note that the Processor

Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned, This causes an ambiguous
situation when attempting to be campatible with Intel’s language, sSince
arbitrary expressions are allowed in this case. Hence, programs which use
this side effect to introduce comments, must be edited to place a ";" before
these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements of
the above form, terminated optionally by an END statement. All statements
following the END are ignored by the assembler.

3. FORMING THE CQPERAND.

In order to campletely describe the operation ocodes and pseudo operations,
tt is necesgsary to first present the form of the operand field, since it is
used in nearly all statements. Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a l6-bit value during the assembly. Purther, the
nutber of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte move immediate instruction,
then the most significant 8 bits of the expression must be zero. The
restrictions on the expression significance is given with the individual
instructions.

3.1. Labels.

As discussed above, a label is an identifier which occurs on a particular
statement. In general, the label is given a value determined by the type of
statement which it precedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.g, a MOV instruction, or a
DS pseudo operation), then the label is given the value of the program address
which it labels., If the label precedes an EQU or SET, then the label is given
the value which results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the
assembler, This value can then be combined with other operands and operators
to form the operand field for a particular instruction.

3.2. Numeric Constants,

A numeric constant is a 16-bit value in one of several bases. The base,
called the radix of the constant, is denoted by a trailing radix indicator.
The radix indicators are

B binary constant (base 2)
(0] octal constant (base 8)

Q octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter O is
easily confused with the digit 4. Any rmumeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant.

A constant is thus canposed as a seguence of digits, followed by an
optional radix indicator, where the digits are in the appropriate range for
the radix. That is binary constants must be composed of @ and 1 digits, octal
constants can contain digits in the range 6 - 7, while decimal constants
contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (1¢p), B (11D), C (12D), D (13D), E (l14D), ard F
(15D) Note that the leading digit of a hexadecimal constant must be a
decimal digit in order to avoid confusing a hexadecimal constant with an
identifier (a leading # will always suffice). A constant composed in this
manner must evaluate to a binary number which can be contained within a 16-bit
counter, otherwise it is truncated on the right by the assembler. Similar to
identifiers, imbedded "S$" are allowed within constants to improve their
readability. Finally, the radix indicator is translated to upper case if a
lower case letter is encountered. The following are all valid instances of
numeric constants

1234 1234D 1160B 1111500005111150000B
1234H @QFFEH 33770 338778220
33770 Bfe3h 12348 offffh

3.3, Reserved Words.

There are several reserved character sequencegs which have predefined
meanings in the operand field of a statement. The names of B88d registers are
glven below, which, when encountered, produce the value shown to the right

A 7
B ?
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSHW 6

(again, lower case names have the same valves as their upper case
equivalents). Machine instructions can also be used in the operand field, and
evaluate to their internal codes. 1In the case of instructions which require
operands, where the specific operand becomes a part of the binary bit pattern

of +he instruction (e.g, MOV A,B), the value of the instruction (in this case
MV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, MOV produces 4/H). _

When the symbol "$" occurs in the operand field (not imbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained withing the
current logical line.

3.4. String Constants,

string constants represent segquences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols (7). All
strings must be fully contained within the current physical line (thus
allowing "!" symbols within strings), and must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes “°), which becomes
a single apostrophe when read by the assembler. In most cases, the string
length is restricted to either one or two characters (the DB pseudo operation
1s an exception), in which case the string becomes an 8 or 16 bit value,
respectively. Two character strings become a 16-bit constant, with the second
character as the low order byte, and the first character as the high order
byte.

The value of a character is its corresponding ASCII code. There is no
case translation within strings, and thus both upper and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

A AB” ‘ab” o
‘Walla Walla Wash.’

"She said “‘Hello " to me.’
‘I said “Hello" to her.’

3.5. Arithmetic and Logical Operators.

The operands described above can be combined in normal algebraic notation
using any cambination of properly formed operands, operators, ard
parenthesized expressions. The operators recognized in the operand field are

a unsigned arithmetic sum of a and b
unsigned arithmetic difference between a and b
unary plius (produces b)
unary minus (identical to @ - b)
unsigned magnitude multiplication of a and b
unsigned magnitude division of a by b
remainder after a / b
logical inverse of b (all ¢'s become 1's, 1's
become @°s), where b is considered a 16-bit value

A U T s 1)

95\»I + 1 +

lofiw N egioniegiogio]
o

./-_ :

aANDb bit-by-bit logical and of a and b

aORDb bit-by-bit logical or of a and b

a XORb bit-by-bit logicl exclusive or of a and b

a SHL b the value which results from shifting a to the
left by an amount b, with zero fill

a SHR b the value which results from shifting a to the
right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numer;
constants, reserved words, and one or two character strings), or foll
enclosed parenthesized subexpressions such as

10+20 16h+370 L /3 (L2+4) SHR 3
- (a” and 5fh) + @° ("B"+B) OR (PSW+M)
(14 (2+c)) shr (A-(B+1))

Note that all canputations are performed at assembly time as 16-bit unsigned
operations. Thus, -1 is computed as @1 which results in the value @ffffh
(i.e., all 1°s). The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression must
be zero. BAs a result, the operation "ADI -1" produces an error message (-1
becomes @ffffh which cannot be represented as an 8 bit value), while "ADI (-1)
AND @FFH" 1s accepted by the assembler since the "AND" operation zeroes the
high order bits of the expression,

3.6. Precedence of Operators.

As a convenience to the programmer, AM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses which are defined by the relative precedence. The
order of application of operators in unparenthesize expressions is listed
below, Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, arnd are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assemble
as the fully parenthesize expressions shown to the right below

a*b+c (@a*b) +c
a+hbh*ece a+(b*C)
aMDDb *cSHL 4 ((a MOD b) * ¢) SHL 4

aORDb AND NOT ¢ + @ SHL e a OR (b AND (NOT (c + (d SHL e))))

Balanced parenthesized subexpressions can always be used to overr‘ide the
assumed parentheses, and thus the last expressio: ao we oould be rewritten to
force application of operators in a different order as

(a OR b) AND (NOT c¢) + d SHL e
resulting in the assumed parentheses
(a OR b) AND ((NOT c) + (d SHL e))

Note that an unparenthesized expression is well-formed only if the expression
which results fram inserting the assumed parentheses is well-formed.

4, ASSEMBLER DIRECTIVES.

Assembler directives are used to set labels to specific values during the
assnbly, perform conditional assembly, define storage areas, and specify
starting addresses in the program, Each assembler directive is denoted by a
"pseudo operation" which appears in the operation field of the line. The
acceptable pseudo gperations are

ORG set the program or data origin

END end program, optional start address
BEQU rumeric “equate”

SET mumeric "set"

Ir begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

DW define data words

s define data storage area

The individual pseudo operations are detailed below
4.1, The ORG directive,
The ORG statement takes the form
label ORG expression

where “label" is an optional program label, and expression is a 1l6-bit
expression, consisting of operands which are defined previous to the ORG
statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements within
a particular program, and there are no checks to ensure that the programmer is
not defining overlapping memory areas. Note that most programs written for
the CP/M system begin with an ORG statement of the form

ORG 120H

which causes machine code generation to begin at the base of the CPM
transient program area, If a label is specified in the ORG statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression).

4.2. The END directive,

The END statement is optional in an assembly language program, but if it
is present it must be the last statement (all subseqguent statements are
ignored in the assembly). The two forms of the END directive are

label END
label END expression

where the label is again optional. If the first form is used, the assembly
process stops, and the default starting address of the pxrogram is taken as
0000. Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code “hex" file which results from the assembly).
Thus, most CP/M assembly language programs end with the statement

END 160¢H

resulting in the default starting address of 1@0H (beginning of the transient
program area) .

4.3. The EQU directive,

The EQU (equate) statement is used to set up synonyms for particular
numeric values., the form is

label BQU expression

where the label must be present, and must not label any other statement. The
assembler evaluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a name which describes
the value in a more human-oriented manner. Further, this name is used
throughout the program to “parameterize" certain functions, Suppose for
example, that data received from a Teletype appears on a particular input
port, and data is sent to the Teletype through the next output port in
seguence. The series of equate statements could be used to define these ports
for a particular hardware environment

TTYBASE BQU 10H ;BASE FORT NUMBER FOR TTY
TTYIN EQU TTYBASE
TTYOUT EQU TTYBASE+]1;TTY DATA OUT

At a later point in the program, the statements which access the Teletype
could appear as

IN TTYIN ;READ TTY DATA TO REG-A

our TTYOUT sWRITE DATA TO TTY FROM RBEG-A

making the program more readable than if the absolute i/o ports had been
used. Further, if the hardware environment is redefined to start the Teletype
canmunications ports at 7FH instead of 19H, the first statement need only be
changed to

TIYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY
and the program can be reassembled without changing any other statements.
4.4. The SET Directive.
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occur on other SET statements within the program.
The expression is evaluated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, while the
SET statement defines a value which is valid from the current SET statement to
the point where the label occurs on the next SET statement. The use of the
SET is similar to the EQU statement, but is used most often in controlling
conditional assembly.

4.5. The IF and ENDIP directives.

The IF and ENDIF statements define a range of assembly language statements
which are to be included or excluded during the assembly process. The form is

IF expression
statement§l
statement}2
statementén
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement). If the expression evaluates to a non-zero value, then
statementgl through statementfn are assembled; if the expression evaluates to
zero, then the statements are listed but not assembled. Conditional assembly
is often used to write a single “generic” program which includes a rumber of
possible run-time environments, with only a few specific portions of the
program selected for any particular assembly. The following program segments
for example, might be part of a pogram which communicates with either a
Teletype or a CRT console (but not both) by selecting a particular value for
TTY before the assembly begins

10

TRUE EQU AFFEFFH ;DEFINE VALUE OF TRUE
FALSE BEQU NOT' TRUE ;:DEFINE VALUE OF FALSE

TTY EQU TRUE :TRUE IF TTY, FALSE IF CRT
‘i‘IYBASE BEQU 1@H ;BASE OF TTY I/0O PORTS
CRIBASE BOU 2¢H ;BASE OF CRT I/0 PORIS

IF TTY ;ASSEMELE RELATIVE TO TTYBASE

QONIN BQU TTYBASE ;OONSOLE INPUT
QONOUT BEQU TTYBASE+]l ;CONSOLE OUTPUT

ENDIF
’ IF NOT TTY ;ASSEMBLE RELATIVE TO CRIBASE
CONIN BQU CRIBASE ;CONSOLE INPUT
QONOUT BQU CRIBASE+]l ;CONSOLE OUTPUT

ENDIF

IN QONIN ;READ OONSOLE DATA

our CoNOuT ;WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a Teletype
is connected, based at port 1@H. The statement defining TTY could be changed
to

TTY B0 FALSE
and, in this case, the program would assemble for a CRT based at port 2¢H.
4.6, The DB Directive.

The DB directive allows the programmer to define initialize storage areas
in single precision (byte) format., The statement form is

label DB e#l, e#2, ..., ein

where e#l through efn are either expressions which evaluate to 8-bit values
(the high order eight bits must be zero), or are ASCII strings of length no
greater than 64 characters. There is no practical restriction on the number
of expressions included on a single source line. The expressions are
evaluated and placed sequentially into the machine code file following the
last program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with
the last character, Strings of length greater than two characters cannot be
used as operands in more complicated expressions (i.e., they must stand alone
between the cammas). Note that ASCII characters are always placed in memory
with the parity bit reset (@). PFurther, recall that there is no translation
fran lower to upper case within strings., The optional label can be used to
reference the data area throughout the remainder of the program. Examples of

valid DB statements are

data: BB 4,1,2,3,4,5
data and @£fh,5,3770,1+2+3+4
‘please type your name ,cr,lf,P

signon: . _nam
AB” SHR 8, 'C°, 'DE° aND 7Fd

R R

4.7. The DW Directive.

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DW e#l, e#2, ..., e¥n

where e#l through efn are expressions which evaluate to 16-bit results. Note
that ASCII strings of length one or two characters are allowed, but strings
lorger than two dharacters disallowed. In all cases, the data storage is
consistent with the 8680 processor: the least significant byte of the
expression is stored forst in memory, followed by the most significant byte.
Examples are

doub: W @ffefh,doub+4,signon-$,255+255

-

oW ‘a’, 5, “ab”, ‘CD°, 6 shl 8 or 11lb

4,8. The DS Directive.

The DS statement is used to reserve an area of uninitialized memory, and
takes the form

label DS expression

where the label is optional. The assembler begins subsequent code generation
after the area reserved by the DS. Thus, the DS statement given above has
exactly the same effect as the statement

label: BEQU § sLABEL VALUE 1S CURRENT QODE LOCATION
ORG S$+expression ;MOVE PAST RESERVED AREA

S. OPERATION QODES.

Assembly language operation codes form the principal part of assenbly
language programs, and form the operation field of the instruction. In
general, ASM accepts all the standard memonics for the Intel 8280
microcomputer, which are given in detail in the Intel manual "“8688 Assembly
Ianguage Programming Manual." Labels are optional on each input line and, if
included, take the value of the instruction address immediately before the
instruction is issuved. The individual operators are listed breifly in the

12

following sections for completeness, although it is understood that the Intel
maruals should be referenced for exact operator details. In each case,

el represents a 3-bit value in the range @-7
vhich can be one of the predefined registers
Ar B' CI D' E' H' L’ M' SP’ or PSW.

‘e8 represents an 8-bit value in the range @-255
elé represents a 16-bit value in the range 8-65535

which can themselves be formed from an arbitrary combination of operands ard
operators, In some cases, the operands are restricted to particular values
within the allowable range, such as the PUSH instruction. These cases will be
noted as they are encountered.

In the sections which follow, each operation codes is listed in its nost
general form, along with a specific example, with a short explanation and
special restrictions.

5.1, Jumps, Calls, and Returns.
The Jump, Call, and Return instructions allow several different forms

which test the condition flags set in the 8080 microcomputer CPU, The forms
are

JMP elé6 JMP L1 Jump wmnconditionally to label
JNZ el6 JMP 12 Jump on non 2ero condition to label
JZ el6 J¥P 1064 Jump on zero condition to label
JINC elé6 JINC L1+4 Jump no carry to label

JC elé6 Jc L3 Jump on carry to label

JRO elé6 JPO $+8 Jump on parity odd to label

JPE el6 JPE (4 Jump on even parity to label

JP elé JP GAMMA Jump on positive result to label
JM elé6 JM al Jump on minus to label

CALL el6 CaLL Sl Call subroutine unconditionally
NZ el6 Mz 82 Call subroutine if non zero flag
CZ elé6 Cz 1eeH Call subroutine on zero flag
NC elb NC S1+4 Call subroutine if no carry set
CC elé6 cC 83 Call subroutine if carry set
CPO elb CRO §$+8 Call subroutine if parity odd
CPE el6 CPE 54 Call suwbroutine if parity even

CP el6 cr GAMMA Call subroutine if positive result
CM el6 M bl$c2 Call subroutine if minus flag

RST e3 RST @ Programmed "restart", eguivalent to
CALL 8*e3, except one byte call

13

RP
RM

Return from subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry

Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result
Return if minus flag is set

5.2. Immediate Operand Instructions.

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which perform immediate arithmetic or logical operations on the
accumilator (register A).

MVI e3,e8

ADI e8
ACT e8
S0I e8
SBI e8
ANI eS8
XRI e8
ORI e8
CPI eS8

LX) e3,el6

MVI B,255

ADT 1

ACI @OFFH

SUI L+ 3

SBI L. AND 11B
ANI $ AND 7FH
XRI 1111$0600B
ORI L AND 1+1
CPI ‘a’

LXI B,108H

Move immediate data to register A, B,
C, D, E, H, L, or M (memory)

2dd immediate operand to A without carry
Add immediate operand to A with carry
Subtract from A without borrow (carry)
Subtract from A with borrow (carry)
Logical “"and” A with immediate data
"Exclusive or" A with immediate data
Logical "or" A with immediate daca
Compare A with immediate data (same
as SUI except register A not changed)

Load extended immediate to register pair
(e3 must be eguivalent to B,D,H, or Sp)

5.3. Increment ard Decrement Instructions,

Instructions are provided in
decrementing single and double precision registers., The instructions are

INR e3
CR €3
INX e3

DCX e3

INR E

ICR A

INX SP

ICX B

the 8088 repetoire for incrementing or

Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
Sirngle precision decrement register (e3
moduces one of A, B, C, D, E, H, L, M)
Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
Double precision decrement register pair
(e3 must be eguivalent to B,D,H, or SP)

5.4. hata Movement Instructions.

14

Instructions which move data from memory to the CPU and from CPU to
memory are given below

MOV e3,e3 MOV A,B Move data to leftmost element from right-
mst element (e3 produces one of A,B,C
D,E,H,L, or M}, MOV M,M is disallowed

LDAX e3 LDAX B Load register A from computed address
(e3 must produce either B or D)

STAX e3 STAX D Store register A to computed address
(e3 must produce either B or D)

LHLD el6 LHLD Ll Load HL direct from location el6 (double
precision locad to H and L)

SHLD elé6 SHLD L5+x Store HL direct to location el6 (double
precision store from H and L to memory)

LDA el6 LDA Gamma Load register A from address elé6

STA el6 STA X35 Store register A into memory at elé

POP e3 FOP PSW load register pair from stack, set SP
(e3 must produce one of B, D, H, or PSW)

PUSH e3 PUSH B Store register pair into stack, set SP
(e3 must produce one of B, D, H, or PSW)

IN e8 IN @ Load register A with data from port e8

Our e8 our 255 Send data from register A to port eS8

XTHL Exchange data from top of stack with HL

PCHL Fill program counter with data from HL

SPHL Fill stack pointer with &ata from HL

XCHG Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations.

Instructions which act upon the single precision accumulator to perform
arithmetic and logic operations are

ADD e3 ADD B Add register given by e3 to accumulator
without carry (e3 must produce one of A,
B, C, D, E, H, or L)

ADC e3 ADC L A3dd register to A with carry, e3 as above

SUB e3 SIB H Subtract reg e3 from A without carry,
e3 is defined as above

SBB e3 SBB 2 Subtract register e3 from A with carry,
e3 defined as above

ANA e3 ANA 1+) Logical "and" reg with A, e3 as above

XRA e3 XRA A "Exclusive or" with A, e3 as above

ORA e3 ORA B Iogical "or" with A, e3 defined as above

CMP e3 CMP H Compare register with A, e3 as above

DAA Decimal adjust register A based upon last
arithmetic logic unit operation

o Complement the bits in register a

STC Set the carry flag to 1

15

CMC
RLC

RRC
RAL

RAR

DAD e3

Complement the carry flag

Rotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)
Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)
Rotate carry/A register to left (carry is
involved in the rotate)

Rotate carry/A register to right (carry
is involved in the rotate)

D 8 Double precision add register pair e3 to
HL (e3 must produce B, D, H, or SP)

5.6 Control Instructions.

The four remaining instructions are categorized as control instructions,

and are listed below

HLT
DI
EI
NOP

6. ERROR MESSAGES.

Halt the B@BJ processor
Disable the interrupt system
Enable the interrupt system
No operation

When errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing. The
line in error is also echoed at the console so that the source listing need
not be examined to determine if errors are present. The error codes are

D

Data error: element in data statement cannot be
placed in the specified data area

Expression error: expression is ill-formed and
cannot be computed at assembly time

Label error: label cannot appear in this context
(may be duplicate label)

Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this wversion)

Overflow: expression is too complicated (i.e., too
many pending operators) to computed, simplify it

Phase error: label does not have the same wvalue on
two subseguent passes through the program

16

R Register error: the value specified as a register
is not compatible with the operation code

\Y Valve error: operand encountered in expression is
improperly formed

Several error message are printed which are due to terminal error
conditions

NO SOURCE FILE PRESENT The file specified in the ASM command does
not exist on disk

NO DIRECTORY SPACE The disk directory is full, erase files
which are not needed, and retry

SCURCE FIIE NAME ERROR Improperly formed ASM file name (e.g., it
is specified with “?2" fields)

SOURCE FILE READ ERROR Source file cannot be read properly by the
assembler, execute a TYPE to determine the
point of error

QUTPUT FILE WRITE ERROR Output files cannot be written properly, most
likely cause is a full disk, erase and retry

CANNOT CLOSE FILE Output file cannot be closed, check to see
if disk is write protected

7. A SAMPLE SESSION.

The following session shows interaction with the assembler and debugger in
the development of a simple assermbly language program.

(7

ASH SORTJ

CP/M ASSEMBLER
B15C uun:4}aecddn55

BO3N USE FACTOR 04 of
END OF ASSEMBLY

asserble SopT . AsM

YER 1.0

—talle used 00 o FF C&Exadem«'ml)

DIR SORT v,
SORT AsM sou~e fle A
SORY BAK b . lavk ed
SORT PRN prist filo (comtams ok Clasaciers)
SORT HEX wackoa code file
ASTYPE sonr.PRiP
Sowce (wme
e code. ocahsn SORT PROGRAN IN CP/M ASSEMBLY LANGUAGE
waclu ; START AT THE BEGINNING OF THE TRANSIENT PROGRAN AR
pleg . ORG 16 0H
quL:AwdmpCuie
2188 2146010 SORT. LEI H, SU ;ADDRESS SWITCH TOGGLE
2163 36081 MY 1 M, 1 ;SET TD 1 FOR FIRST ITERATION
G105 214761 LK1 H 1 ;ADDRESS INDEX
3188 3680 My 1 M, i1 = @
; COMPARE | WITn ARRAY SIZE
2104 7E COnP. MG Y A, M ;A REGISTER = I
2188 FEBS CP 1 N-1 ;CY SET IF 1 ¢ (N-1)
816D D21981 JNC CONT FCONTINUE IF 1 (= (N-2)
; END OF ONE PASS THROUGH DATA
Bl1@ 214601 LK1 H, SV ;CHECK FOR ZERO SWITCHES
0113 7EB7C20881 MOV R,M! ORA A! JN2 SORT END OF SORT IF Su=
@118 FF RST 7 ;60 TO THE DEBUGGER INSTEAD NF REr
; ““C‘*ﬁcourlnus THIS PASS
i ADDRESSING 1, SO LCAD AV(I) INTD REGISTERS
8119 SF16B02148CONT. MOV E,A! MYI D, 8! LX1 H.AY! DAD D! DAD D
@121 4E792346 . MOV C,M! MOV A, C! INX H! MOY 8. #
; LOU ORDER BYTE IN A AND L. HIGH ORDER BYTE IN B
; MOY H AND L TO ADDRESS AY(I+1)
@125 23 IHX H
§
; COMPARE VALUE VITH REGS CONTAINING AV(I)
@126 965778239¢E SUB M' MOV D.A! MOY A.3! INX H! SEB M ;SUBTRACT
; BORROW SET IF AVC(I+L1) > AVCI)
8128 DA3FO1! JC INCI ,SKIP IF IN PROFER DRUER
; CHECK FOR EQUAL VALUES
B12E B2CAIFQI ORA D' JZ IHCI SKIP IF AVC1) = AV(I+1) L g

@132 56702BSE MOV D,M! MOV M,B! DBCX H! HDV E.M

B136 7128722873 HOV M.C! DCK H! MOY M, D! DCX H' #0Y M, E
) INCREMENT SWITCH COUNT
B13B 21460134 LK1 H,8U! IHR M
H
; INCREMENT 1
BI3F 2{478134C3INCI, LK1 H,11 INR M| JMP COMP
; DATA DEFINITION SECTION
9146 0@ SV DB e SRESERVE SPACE FOR SWITCH COUNT
@147 1. s i :SPACE FOR INDEX
6140 OSED640BLEAY: B S, 1#08,36, 50, 28, 7, 18008, 360,100, -32767
BOBA = EQU ($-AV)/2 ;COMPUTE N INSTEAD OF PRE
el5¢ "-——qw:&wnu END
A>TYPE SORT.HEX,

. 1001PP60214601360121470136007EFEGOD2150140)
L 10B11PBB2146017EB7C2APRIFFSF16062148611968 -
i
L 18812006194 E79234623965778239EDA3FEIRZCAAT "m‘%‘ eade 1n
. 100136003F8156782B5E712087228732146813421C7 | HEX Yo
. B7014806420134C36A01BO6E
. 10014606B50664001E0B32601408007PRE8832C018E
. 8401580854060 1808E
. 0OHEBEOBOH
AIDBT SORT. MEX, shrt ddsua un

16K DDT VEEK 1.8
NEXT PC

p15c Baes defnwtt address (no addvess on BID shW)

-XP,
= o
P=6oe 183, dmny,?c{-olo

-UFFFFy wrdvace fo, 65535 Steps ({ulaab‘i'(;:%

CoZEMPEQRID A=20 B=6@0P D=BOED H=@AEB S=0108 P=B16@ LXI H,0146+0160
-T19
) tvace (0, Steps

CoZeMBEOl O A=8) B=Pp020 D=A000 H=0146 S=0186 P=81808 LXI H.,B146
CeZoMPEDID A=D1 B=P@OQ D=-P0PB808 H=GB146 S=01006 P=Q123 MVI HM,61
Co2BMBER]1 @ A=b1 B=-8006 L=-H069 H=0146 S=6108 P=6105 LX!] H,e147
CoZoHMREBI® A=B) B=06B0 D=6008 H=0147 S=0t00 P=0108 MYl M,@¢
CoZoMPEBIO A=61 b=006B6 D=0088 H=0147? S=0108 P=<0!bA MOAY A.M
C6ZeHBEB]I G A=00 B=0886 D=B068 H=Q@147 S=98188 P=B16B CP1 ©95
C1Ze6M1EQIO A=-00 B-860B0 D=D000 H=0147 S=01606 P=010D JUJNC ©1193
Ci12e6MI1EG10Q R=80 B=00680P D=6690 H=08t47 S=0106 P=B11@ LXI H,@6146
C1Z0M1EQ1® A=BQ B=PBOGPO D=0000 H=0146 S$S=08100 P=G113 HAV A.M
C120M1EQ10 A=H] B=6EG0P D=006P H=0146 S=B160 P=D1i4 ORARA A
CoZBHRER1® A=D1 B=0BB0 D=B3P0P H=0146 S=0102 P=B1I1S UNZ 91880
CeZ0MBEQTIO A=D1 B=0080 D=d00P H=9146 S-0100 P=018@ LXI H,B146
CeZoMEeEQ1® A=B1 B=8000 D=B0OEB H=G146 S=0108 P=6183 MVI n,e1
CoZonBEol6 n=D) B-92PBP D=-B00G0 H=0146 50160 P=8105 LX] H,B147
CeZpMPER1® A=Bl B=-000P D-288HP H=0147 S=8100 P=0188 MVl M,00

CoZ28MRPERID A=P1 B=P0OAP D=BGGB H=0147 S=81B0 P=816A MOV A,H*B)BE
-R1BD

JC ne) Cwﬂc“"o ‘ld'““‘f cmcavrj ﬂﬂ"‘dv} 19

8103
orie 1984

-%P
7

P=0188 190, veset progaw Couctr buck b beginnmg of Prosram

¥
—na‘? +roce exection

CoZoMBERI®
Coa20MREB]IG
Ce28MBEQ]B
CazZorMPEG]O
CoZuMeEele
CoZobHMeEQI @
Ci2eMiEQ]I®
C1ZOM1Eale@
CizeMieole
C1zemiEQl®
Ci1ZéHMiEQ]I®
fe2eM1Eal0
EezZaMiER] D
CoZ28HIEQ]Q
CeZzeMiEol®
£eZBHi1EQ]®
Lleﬁ‘2

2100 LXI
At NYI
pi@s LX]
188 MY1
8168A HOV
21{0E CP1
BiaDn JC
CRNE:] LXI
Birt13 HOoV
Blt4 ORA
8115 JNZ
L2
giie RST
BllL9 MOV
BllA Myl
81tc LX1

B=0080
B=0000
B=p0Bo
B=6068
B=0080
B=p008
B=@obe
B=60B0O
B=0000
B=p0B80@
b=0080880
B=00080
B=@0d2
B=0623
8=008S
B=80853

A=00
A=99
A=60
R=080
R=68
A=B8@
A=B80
A=B4@
A=00
A=088
A=09
AR=P4a
A=dQ
A<B9
A=B5
A=B5

H,B146
M.B1
H.0147
M,00
AN

895
8119
H,081486
AL M

ﬁ J
9100

87

E,R
D,ea
H.@148

~ Gt (6t bk rabad

-G 118, et ?Vorl)m%'cm“*- ¢

0127 &bp-pcd wt aw ereveal (w{ftxrup“‘ 7 -Fm,q ‘Frmj&?auc(
—T4i \ook &k ‘w?m:) Pyggyam L‘Aw modt 1

CezomMpERI®
CoZomMpEQl @
Ce2oMBEQLID
CoZ6HOEOI1®
-D14s8

6148 BS B9
BisSe 32 69
8168 80 @O

Aw=38
R=38
A=0886
A=09

B=2@64
B=6064
B=o0d64
B-00864

07 08 14 Po
€4 80 64 PO
80 00 20 8@

{0 10H skps

H,B8146 -
H,B1 (é*
H,8147 v

Mobe
a.n

LX]
Myl
LX1
GRS
MOV
CFl
JC
HOV
Mvl
LXI H.
BAD
DAD
Hav
Moy
INX
HOV

D=88400
D=8008
D=B0006
D=p@006
D=8000
D=gooe
D=B@Goo
=gbaoo
D=8000
D=8000
D=08000
D=0000d
l=aaen
D=8000
D=pooe
D=Booe

H=0147
H=0146
H=08146
H=0147
H=0147?
H=8147
H=0147
H=08147
H=0614?
H=@l47?
H=0148
H=0148 S5=0109
H=¢143 S=@fed
H=9148 S=

H=0148 S=919@
H=0149

P=@169
P=818&3
P=0163
P=91@8
P=618A
P=816B
P=@1abd
P=8119
P=011A
P=811(C
P=B11F
P=012@
P=e12]
F=2122
P=@123
P=06124

puctomatic
bfmkw wat

L\é{— sowme code

—Fvw OO

let wore

wryedt PC (01251) and vul 1 veal +ime “‘o | JBH

(?mbmuauxs
loqmnj \ tn&db)
D=B920@6 H=A156 S=0100 P=0127 MOV D, A
D=3806 H=@1S6 S5S=0100 P=0128 MOV R, B
D=3806 H=0156 $=0100 P=6129 INX H
D=3806 H=0157 S$=d16@ P=@12RA SBEB H=»6128B

e kf‘dvd‘d s Sorfed, budt prograw doesat 5“4’-

2C B8t EB8 ©3 6] 80 PO @00 o6 68 2.D.D...........
48 0@ 89 “u DO @00 0O LB 9B U0

iy

%f*

20

_Gdﬂ veturn '\"0 CP/L
pnt SORT.HEX’, relead Hie menvy IMage

16K DOT WER 1.0

HEXT PC
BISC BBee
- %P

P=AGOR ma} Se’r?c%bej;nulﬁ a(\?'aﬂm“
-L163, bt bed opeode

818D JNC 0119‘/
B116 LXI H,@146

~ aoort et wuc\n rubout
—RiGD’) asg;uabléw qOCoc(e.

18D JC 119
»

Bllﬁg
—LIGB; | st slnrhng Se—d'w'\" DF ?V‘U‘@-M

6168 LX1 H.0146
8163 MVI H.0Q!
B165 LX1 H,06147?
8188 MYl H,p0

- abok list with cubsut o _
-A183) clowge “SN._I—CL\’ uchokizaton o 217 4

gia v ’
13HIHO)

91952
re yekur Yo CP/ wik etl-¢ (6F woks as well)

SAVE { SORT.COM, savz 1 Ppoge (256 btes -Fm 100K 40 1FFH) on disk i Case
s s . L’j‘ ’ we have Yo velood [«der
A>DDT SORT.COH, yestnrt DOT weh
Saved memay \mase
16K DBY VER 1.8

HEXT FC - :
G200 6108 CoM” ‘((lc alwaﬂs starfs wits addvess 1004
G, runthe proyawm £rom PC=100K
’ %
«0118 frogrowmed shop (2577) Cuesunteed
~D148
s el properly <orted
96 =

148 B85 09 ©7 8@ 14 80 IE

6156 32 8@ 64 @B €4 B8 2C ©1 EB 03 81 50 00 90 86 88 2 D.D.,

0166 PG 6o 00 OB ©® 0P 0O S0 P OD bO e 069 6D ©vp 2O
8170 PO 00 0O vD 08 PO b6 66 @3 Vb 0O Gu Ov 8d 0B 090

-Gl refurn o CPIM

ED SORT.ASH

cM-2 -
€N, e@un, fond vad

* _J l\lr
P

nmoke C(Aavmj(s J‘o OAJUM‘-I ‘Pvasvaw\.

MVl M-0 il = @
{.;g\:.-\v-:
mtl H, 1 JANDRESS IHDEX
amH«r[m&
Mv1 M, iSET TO 1 FOR FIRSTY ITERATION

KT, B Loe e fy e wed tinse

LxI | H, T ;ADDRESS INDEX

'l watrt v (ine

‘E>

MVl N.D ZERO S
LXI H, 1 JADDRESS INDEX
JNC#B
CONTY ;CONTINUE TIF I <= (N-2)
LTy
JC CONT GCONTIRUE IF 1 (= (N-2)
gousee From dish A
[}’hyh dist A

HSH SORT. AAZS ™ sk prn Fle

Cé N

Bi5C
#a7H

ASSEMBLER - VYEK 1.0

wat adres o assowlle

USE FACTOR

END OF ASSEMBLY

DDT SORT. st‘} Jest Proqro dwvau

tEéX DOY VER 1. @

NEXTY
013¢

PC
base

—Bl@%g

vellg

-Dl4§a

8148
B156

'/\Jdu sof*a\

BS 9808 97 86 14 BB 1E 80
32 69 64 B0 €4 BO 2C 91 EB 03 Bl

88 99 @B Q96 PO 2 L.D..

Dleb B0 006 80 V0 vy 00 0O 89 0D 60 vy 0 00 Gu DL DO

- sbovt with rubndt

.-C‘@)

retorafv 0P/ - Prograws Cleds Ok

22

