L0) DIGITAL RESEARCKH’

Post Oftice Box 579, Pacific Grove, California 83950, (408) 649-3896

CP/M 2.2 INTERFACE GUIDE

Copyright (e¢) 1979

DIGITAL RESEARCH

Copyright (e} 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacifiec Grove,
Californta 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

CP/M 2.2 INTERFACE GUIDE

Copyright (c)
Digital Research,

Pacific Grove,

Introduction

1979
Box 579

California

Operating System Call Conventions

A Sample File-to-File Copy Program

A Sample File Dump UOtility .

A Sample Random Access Program ., .,

System Function Summary

»

.

34

37

46

1., INTRODUCTION.

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/0 facilities of the system,

CP/M is logically divided into four parts, called the Basic I/0
System (BIOS), the Basic Disk Operating System (BDOS), the Conscle
command processor (CCP), and the Transient Program Area (TPA). The
BIOS 1is a hardware-dependent module which defines the exact low level
interface to a particular computer system which 1s necessary for
peripheral device 1I/0. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled “"CP/M Alteration Guide").
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP 1is a
gistinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device, The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed later sections,
Memory organization of the CP/M system in shown below:

high | |

memory | |
| FDOS (BDOS+BIOS) |

FBASE: | [
I |

I CCp f

CBASE: | [
I I

{ I

I |

| TPA I

I I

TBASE: | [
| system parameters |

BOOT: | |

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
“CP/M Alteration Guide.® All standard CP/M versions, however, assume
BOOT = 2080H, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(A1l Information Contained Herein is Proprietary to Digital Reseacrch.)

1

to return control to CP/M at the command level, Further, the standard
versions assume TBASE = BOOT+#100H which is normally location 81888,
The principal entry point to the FDOS 1is at location BOOT+2005H
(normal ly #A0G5H) where a jump to FBASE is found. The address field at
BOOT+08A6H (normally @@G6H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP 1is
being cverlayed by a transient program,

Transient programs are loaded into the TPA and executed as
follows. The operator communicates with the CCP by typing command
lines following each prompt. Each command 1line takes one of the
forms:

command
command filel
command filel file2

where “command" is either a built-in function such as DIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command, COM

"If the file is found, 1t is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory. The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE.

If the command is followed by one or two file specifications,
the CCP prepares one or two file control block (FCB) names in the
system parameter area, These optioral FCB's are in the form necessary
to access files through the FDOS, and are described in the next
section,

The transient program receives control from the CCP and begins
execution, perhaps using the I/0 facilities of the FDOS, The
transient program is "called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory_ up
through FBASE-1 is free,

The transient program may use the CP/M I/0 facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/O system is accessed by passing a
"function number” and an "information address™ to CP/M through the
FDOS entry point at BOOT+@665H, In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below.

(All Information Contained Herein is Proprietary to Digital Research,)

2

2. OPERATING SYSTEM CALL CONVENTIONS,

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions 1listed below, however, are more simply accessed
through the I1/0 macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Applications Guide."

CP/M facilities which are available for access by transient
programs fall 1into two general categories: simple device 1/0, and
disk file I/0. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Seguential Tape Character
Write a Seguential Tape Character
Write a List Device Character
Get or Set 1/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Segquential Read
Random or Seguential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address thrcugh the
primary entry point at location BOOT+¢@885B, In general, the function
number is passed in register C with the information address 1in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = R upon return in all cases. Note that
the register passing conventions of CP/M agree with those of Intel's
PL/M systems programming language, The list of CP/M function numbers
is given below.

(A1l Information Contained Herein is Proprietary to Digital Research.)

3

System Reset 19 Delete File

1l Console Input 2P Read Seguential

2 Console Output 21 Write Segquential

3 Reader Input 22 Make File

4 Punch Qutput 23 Rename File

5 List OQutput 24 Return Login Vector
6 Direct Console I/0 25 Return Current Disk
7 Get I/0 Byte 26 Set DMA Address

8 Set I/0 Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
1é¢ Read Console Buffer 29 Get R/0 Vector

11 Get Console Status 3 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random

15 Open File 34 Write Random

16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the =stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs,
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location @8d8H), it
1s sufficiently large to make CP/M system <calls since the FDOS
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters -continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = BOOOH):

BDOS EQU @8065H ; STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG 210668 ;BASE OF TPA
NEXTC: MVI C,CONIN ; READ NEXT CHARACTER
CALL BDOS ; RETURN CHARACTER IN <A>
CpI Pl :END OF PROCESSING?
JINZ NEXTC ; LOCP IF NOT
RET ; RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number o©f records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consistinga of one to eight non-blank
characters, and the file type consisting of zero to three non-blank

characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each

category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research,)

4

which have been established, although they are generally arbit%ary:

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File

COM CCP Command File $SS Temporary File

Source files are treated as a seguence of ASCII characters, where each
"line" of the source file is followed by a carriage-return 1line-feed
segquence (#DH followed by 8AH). Thus one 128 byte CP/M record could
contain several lines of source text, The end of an ASCII file is
denoted by a control-2 character (lAH) or a real end of file, returned
by the CP/M read operation, Control-72 characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file <condition returned by CP/M is used to terminate read
operations,

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from © through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area. Internally, all
files are broken 1into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit wvalues, Although the
decanposition into extents 1is discussed 1in the paragraphs which
follow, they are of no particular conseguence to the programmer since
each extent 1is automatically accessed in both seguential and random
access modes,

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB)., Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+865CH (normally @@5CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by CP/M
at location BOOT+B8P8PH (normally #680H) which is the 1initial default
DMA address (see function 26), All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequential access and a series of 36 bytes 1in the case
that the file 1is accessed randomly, The default file control block
normally located at @85CH can be used for random access files, since
the three bytes starting at BOOT+997DH are avalilable for this purpose.
The FCB format is shown with the following fields:

({All Information Contained Herein is Proprietary to Digital Research,)
5

e R S —— S g P R PP R R A e e e

- A e e e et R e N e e N S M S S e See e S e A M D W WS W W e mwp S S e M M v

90 21 22 ... #8 89 1¢ 11 12 13 14 15 16 ... 31 32 33 34 35
where

ar drive code (8 - 16)
B => use default drive for file

1l => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl...£8 contain the file name in ASCII
upper case, with high bit = 8

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the
bit of these positions,

tl' = 1 => Read/Only file,
t2® =1 => 8Ys file, no DIR list
ex contains the current extent number,

normally set to @4 by the user, but
in range ¢ - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent “ex,"
takes on values from # - 128

@d...dn filled-in by CP/M, reserved for
system use

cr current record to read or write in

a sequential file operation, normally
set to zero by user

rd,rl,r2 optional random record number in the
range 9-65535, with overflow to r2,
rd,rl constitute a 16-bit value with
low byte r#, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it 1is the
programmer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the "cr* field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero,

(All Information Contained Herein is Proprietary to Digital Research.)

6

FCB's are stored in a directory area of the disk, and are
brought 1into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB 1is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
commandg) .

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the 1line following the
transient name, denoted by “filel"™ and "“file2" 1in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+905CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d¢ ... dn portion of the first FCB, and must be moved to another
area of memory before use, If, for example, the operator types

PROGNAME B:X.20T Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+@05CH is initialized to drive code 2, file name “X" and file type
"Z0T". The second drive code takes the default value 8, which is
placed at BOOT+BB6CH, with the file name “Y" placed into location
BOOT+996DH and file type "“ZAP" located 8 bytes later at BOOT+8675H.
All remaining fields through “"cr" are set to zero. Note again that it
is the programmer‘s responsibility to move this second file name and
type to another area, usually a separate file control block, before

opening the file which begins at BOCT+805CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+885DH and BOOT+BB6DH contain blanks, In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions,

As an added convenience, the default buffer area at location
BOOT+8B8@H is 1initialized to the command 1line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count., Given the above command line, the area beginning at
BOOT+G68PH is initialized as follows:

BOOT+09080H :
+00 +01 +02 +03 +04 +85 +06 +07 +08 +09 +19 +11 +12 +13 +14
l 4 L] 1] " B “ [. [" x 1] 1] . ® L7 Z u " O u (1) Tu (1) 1] un Y 1] 1] . 1] w Z 1] 1) A " »n P h

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character, Again, it is

the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail 1in the pages
which follow.

(All Information Contained Herein is Proprietary to Digital Research.)
7

IS PR 2 S XS F SR RSSO SELEREER RS R R EREEEE

* x*
* FUNCTION #: System Reset :
4

ok e P v & & vk s Y JE Pt o e ke dr sk v ok K Je gk ok ok de b o o o o e ok e ok
* Entry Parameters: "
* Register C: @0H x

Y % K % ok & e ko % dr o o dr de v e i o o o o ok ol ot o okt o o ok o ok o ok i A ok

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

ok Xk Ak kb kh ek kR kA ks ke ko kox

* W
¥ PFUNCTION 1: CONSOLE INPUT *
% w
Ak hkkr ke kkk Rk rhkhkhkhkkrhwhhd
* Entry Parameters: *
* Register C: @1H *
w w
* Returned Value: *
* Register A: ASCII Character *
e dr e vk Jk i e ke o e 3 ok sk A ok e d ok g Wk e Ak W e o e e sk e e o ke ke ik

The console input function reads the next console character to
register A, Graphlc characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console, Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

Ak hkkAhhhkdkkhhhkhkrkkhkhdhkhkhddrhbkk bk i

* *
* FUNCTION 2: CONSOLE OUTPUT *
* *
ek ke ek ke kFdrkk ko wih
* Entry Parameters: *
* Register C: B82H *
* Register E: ASCII Character *
* »*

LES SR A SRR EEIESEEEEZILEEESEEREEEER RS R RS

The ASCII character from register E 1is sent to the console
device. Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(A1l Information Contained Herein is Proprietary to Digital Research,)

8

% d %% d gk ok ok %k ok st 3k % v de % v gk ok ok ke i ko e ok %k ke % ok e %k e ok

* *
* FUNCTION 3: READER INPUT *
b 4 w
Y % %k b ok ok e Yo Yo okt ok ok % Jk gk ok sk ok sk sk ko ok % gk ok ok Wk ok ko o ko % ke
* Entry Parameters: *
* Register C: 834 *
* *
* Returned Value: *
% Register A: ASCII Character *
ook A ok W W Kk A K B Yo Al kv gk sk e e e b Ak %k T gk e A W o Wk ok e e ok ok ok

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"). Control does not return until the character has
been read,

LRSS SRS RESESEREESSZEXSESEZRZSSREE R RS

* *
* FUNCTION 4: PUNCH OUTPUT *
* *
Kk 7k % gk sk K d %k ok %k dr ok k% ok ok b ok ok gk k ke 3k ko ok ok ok ok vk kb Yk ke ok
* Entry Parameters: *
* Register C: B4H *
* Register E: ASCII Character *
* *
e e Yo Kk ko gk e ok sk %k gk ke dr A& ok ok 3k e ok e o ok e v kR 3k 3k ok ok ok %k ok ok ok k&

The Punch Output function sends the character from register E to
the logical punch device,

d % de Rk ok ok ek g g ok v T v e ke ek ok o gk sk o ok ke o dk b ok e % e ok ok
%

FONCTION 5: LIST OUTPUT *
*

*
*
.4
KRRk Nk ko k Nk kA ko x ko kX ki
* Entry Parameters: *
* Register C: B5H *
* Register E: ASCII Character *
*
»w

*
W sk & ok gk o & 3k % %k Sk e ok ok ok vk ok sk sk & ok ok ok o e Kk ok ok kK k& vk ke e W

The List Output function sends the ASCII character in register E
to the logical listing device,

(All Information Contained Herein is Proprietary to Digital Research,)

9

A 2SR RSRRRARRRRSSS R Rl RSttt R g
w

FUNCTION 6: DIRECT CONSOLE I/0 *

4
¥ % kv ok sk & %k i v K sk d % ok dk sk o o st e ke i ok ok 3k e e e o o e e ok ok ok o

Entry Parameters: b
Register C: @e6H
Register E: @FFH (input) or
char (output)

Returned Value:

Register A: char or status
(no value)
LR EERE SRR SR F RTINS TS LTSS SRR R R

% X % X ¥ ¥ % * % % ®

x
*
*
n
*
*
w
X

Direct console I/0 is supported under CP/M for those specialized
applications where unadorned console input and output 1s required,
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g.,, control-S and
control-P), Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/0 under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input reguest, or register E contains an ASCII
character, If the input value is FF, then function 6 returns A = 80
if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes the
E contains a valid ASCII character which i1s sent to the console,

(All Information Contained Herein is Proprietary to Digital Research.)

19

I'TP2E22E2X3 2522223282232 222 2202 RdR el

* *
* FUNCTION 7: GET I/O BYTE *
*
' E33883323 2233332333333 22222t tg
* Entry Parameters: *
* Register C: 87H *
x %
* Returned Value: *
* Register A: 1I/0 Byte Value *
R % d ol dr d Y % gk ok %k kb e ok ok Sk ke ek A ok R ok A e ok o ok

The Get I/0 Byte function returns the current value of IOBYTE in
register A. See the "CP/M Alteration Guide" for IOBYTE definition.

d ok ok ok 3k o e ok o o o ok Sk ok ok ok ok ak ok gk ok ok g ok e ok ko ek e e ok

* *
* FUNCTION 8: SET I/0 BYTE o
¥ %
LB SRS R AR RS R 222222 RRRRRRRRRRRERS D
* Entry Parameters: *
* Register C: P8H *
* Register E: I/O Byte Value *
x *

A ¥ % s gk vk e g e vk dk ok ol vz o Ak vk T ok d e o St ok dr W o ol e ok ok e ot e ok

The Set I/O Byte function changes the system IOBYTE value to
that given in register E,

S e o A de g ek ok ok A sk o sk sk ok o s e W sk dr dr e dr W o o ok ok ok ok W

® x
* FUNCTION 9: PRINT STRING *
x* w
% R v ke vk o %k ko & % ok ok %k ol dr W o o o gt s o dr ok g ok 3 o o o o o YR ok o ok R
* Entry Parameters: *
* Register C: 094 *
* Registers DE: String Address *
* w

LES SRS RS RRS RS RS R R SRR RS RRS

The Print String function sends the character string stored 1n
memory at the location given by DE to the console device, until a "$”
is encountered in the string, Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

11

Whhkhhhhbrdwkrkrrrwr ke rrk ek r ke ok k

* x
* FUNCTION 18: READ CONSOLE BUFFER *
* *
LR RS SRR FEERE R RER TR EEERREEIEERETEEEE D
* Entry Parameters: *
* Register C: #@AH *
* Registers DE: Buffer Address :
»

* Returned Value: *
* Console Characters in Buffer *
LSS R SR ERERESEEEREEEESE TR P EE TR I I I I GG

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated

when either the input buffer overflows., The Read Buffer takes the
form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 . o +n

—— i ———— T ————————— T — " S ey . M D e e ———— —

where "mx" is the maximum number of characters which the buffer will
hold (1 to 255), “nc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console, 1if nc
< mx, then uninitialized positions follow the last character, denoted
by "??2“ in the above figure, A number of control functions are
recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

ctl-H backspaces one character position

ctl-J (line feed) terminates input line

ctl-M (return) terminates input line

ctl-R retypes the current line after new line
ctl-U removes currnt line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to

the extreme leﬁt margin). This convention makes operator data input
and line correction more legible.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Yd v sk ok 3 W ok gk sk ok ok e W sk sk ke R ok ok ok ok ek e ko o kK

* *
* PFUNCTION 11: GET CONSOLE STATUS *
* *

%%k Ak ok v ot ok v o ok e ok vk i e e ok sk o i o e ke ol Ok e ol s o o S W o o o

* Entry Parameters: *
Register C: BBH

Register A: Console Status
sk e W v %k Jr e ok dr Kk o ok vk e Sk e ok ok W ok ok o % % vk kg ok ik ik ok k%

x %
* w
* Returned Value: *
* *
* 3
The Console Status function checks to see 1if a c¢haracter has
been typed at the console, If a character is ready, the value BFFH is
returned in register A. Otherwise a B8H value is returned,

Ak KRk KA AR UK AN KRR A I RR AR RN ko k& sk ok b ok
* *
* FUNCTION 12: RETURN VERSION NUMBER *
"~ *
I 22 e RS E S LS T T e e R

* Entry Parameters: *
Register C: 8cCH

Registers HL: Version Number
% Jc g 3 s A v ok T ok ok o W o ok ok ok e gk ek ok ok o ok o o ol ok a ok ake ok

* x
.4 w
* Returned Value: *
%* w
* *

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with B = 028
designating the CP/M release (H = g1 for MP/M), and L = 084 for all
releases previous to 2,8, cp/M 2.8 returns a hexadecimal 28 1in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both seguential and random
access functions, with random access disabled when operating under
early releases of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

13

& % & % % % dk & % % vk e % ok dr vk e e 9 o gk die e e O e o vk ok dr e ok ok ke ok

* w
* FUNCTION 13: RESET DISK SYSTEM *
:*i***********************************:
* Entry Parameters: *
* Register C: 0DH *
b { x

LB B SSESESSS SRR RS SEEESREERSE RS REE S S]

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected, and the
default DMA address 1s reset to BOOT+288QH. This function can be
used, for example, by an application program which requires a disk
change without a system reboot,

d Yo Yo ¢ dr sk d v o g e vk 9 vk e ok K T ok v e e e o ak o i o e ke ok bk ko %k ok R

* *
* FUNCTION 14: SELECT DISK *
* *

R Xk ko ko k ok kA ke ke ko w

* Entry Parameters: *
* Register C: BEH *
* Register E: Selected Disk *
* 4

' Z2EZS2R2R2S22222 2SS RR RS SRR RN R RS S S

The Select Disk function designates the disk drive named 1in
register E as the default disk for subsequent file operations, with E
= @ for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
“on-line" status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation., 1If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28),. FCB's which specify drive code 2zero (dr ="00H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(Al Information Contained Herein is Proprietary to Digital Research.)
14

EHA KRR A AR AR RRNRRRARR A KRR AR Ak ko ek k%

* *
* FUNCTION 15: OPEN FILE *
* *

LE SRR E N EFE ST ST LSRR SRR RSN SFEEESEEEE EF

* Entry Parameters: *
Register C: OFH
Registers DE: FCB Address

Register A: Directory Cogde
LB RS SSSERREEES RS RS SR RSN SRR RS RS

* *
x *
x »®
* Returned Value: *
* %
* *

The Open File operation is used to activate a file which
currently exists 1in the disk directory for the currently active user
number. The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII guestion mark (3FH) matches any
directory character in any of these positions., Normally, no guestion

marks are included and, further, bytes "ex"™ and "s2" of the FCB are
zZero.

If a directory element 1is matched, the relevant directory
information is copied into bytes d@8 through dn of the FCB, thus
allowing access to the files through subseguent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed., Upon return, the open function
returns a “"directory code" with the value § through 3 if the open was
successful, or @FFH (255 4decimal) if the file cannot be found. If
gquestion marks occur in the FCB then the first matching FCB 1is
activated. Note that the current record ("cr") must be zeroed by the

progran 1f the file is to be accessed sequentially from the first
record,

(A1l Information Contained Herein is Proprietary to Digital Research.)

15

XA XX RR AN RIANERA IR AR AT ARARARR

w *
* FUNCTION 16: CLOSE FILE *
b 4 w
B2 2SFEERER SRS SRR RRRRSRRRRRRREE,
* Entry Parameters: *
* Register C: 1@H *
* Registers DE: FCB Address *
4 *
* Returned Value: *
* Register A: Directory Code *
2SS SEER2EEER2 222223222 E

The Close File function performs the inverse of the open file
function, Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory., The FCB matching process for the close 1is identical
to the open function, The directory code returned for a successful
close operation is @, 1, 2, or 3, while a BFFH (255 decimal) 1is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information,

(All Information Contained Herein is Proprietéry to Digital Research.)

16

I AR ASEEEEEESERS RS SRR SRR R RRRERES,
* *

* FUNCTION 17: SEARCH FOR FIRST :
x

I B A S RS ERSES RIS SSRSSSELR SRR ER R RRRE 28

* Entry Parameters:
Register C: 1llH
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

*
w
x
*
*
R gk ok ko k ok sk A ok ok sk 3k vk ok ol ok g o gk ok e ko ok ek Rk ok e ok

*
*
»
x
%
| 4
*

Search First scans the directory for a match with the file given
by the FCB addressed by DE, The value 255 (hexadecimal FF) 1is
returned if the file is not found, otherwise 8, 1, 2, or 3 is returned
indicating the file is present, In the case that the file is foung,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.,e.,
rotate the B reqgister left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position,

An ASCII question mark (63 decimal, 3F hexadecimal) 1in any
position from “"fl” through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr"” field contains an ASCII question mark, then the auvto disk select
function 1is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number, This latter function 1is not normally used by
application programs, but does allow complete flexibility to scan all
current directory wvalues, 1If the "dr" field is not a question mark,
the “s2" byte is automatically zeroed,

I B ERESEREEESERELEESSSE RS RRRRSRRSRsn S

* *
* FUNCTION 18: SEARCH FOR NEXT *
*
KAk Akkdhkkkkkhk kv hk kkkkhkknkk kX
* Entry Parameters: X
x Register C: 12H ¥
* Returned Valuye: *
* Register A: Directory Code *
I E BB SRR EEEEERSEESE RS S S AR RS REERER]

The Search Next function i3 similar to the Search First
function, except that the directory scan continues from the last

matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

(A1l Information Contained Herein is Proprietary to Digital Research,)

17

I ES2 2222 SESSRRRSEERRSRERSS R SRR R SRS SR

x x
* FUNCTION 19: DELETE FILE *
b 4 *
% % dc de v de vk de e ok i v e s de ok e e ok v d sk o e T e e e v ko ok e ke ok W
* Entry Parameters: *
* Register C: 13H *
* Registers DE: FCB Address *
* w
* Returned Value: ' *
* Register A: Directory Code *
ARk kk kX kR kX ke kkh Ak khk Ak

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., gquestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions,

Function 19 returns a decimal 255 1if the referenced file or

files cannot be found, otherwise a wvalue 1in the range 6 to 3 is
returned.

LEEESEREELSEEERTE RIS FETRERSEELE TR LR L B LY

x *
* FUNCTION 20: READ SEQUENTIAL *
* »
ISR SR SES LSRR RE SRR SSESEEEERE SRR RERE &
* Entry Parameters: *
* Register C: 14H *
* Registers DE: FCB Address *
* *
* Returned Value: >
* Register A: Directory Code *
Je Jc e e S Jo B o e vk ko gk sk vk dr gk sk de dr e e 3k g o W % W % e % % o %k K o O

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Seguential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "cr" of the
extent, and the "cr" field is automatically incremented to the next
record position, If the "cr" field overflows then the next logical
extent is automatically opened and the “"cr" field is reset to zero 1in
preparation for the next read operation, The value 68H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs),

(All Information Contained Herein is Proprietary to Digital Research.)

18

I B82S R R RS RS ERERS RS SSRE SRR RS

%* *
* FUNCTION 21: WRITE SEQUENTIAL *
* *

KA Ak hkk ks k A Ak kk Rk kkk kkkkkkkkkhhkhk

* Entry Parameters:
Register C: 15H

Registers DE: FCB Address

*

Returned Value:

Register A: Directery Code

*
w»
*
%
*
LSS SRR ES RS SS RS RRERREEERRES RS S ¢

*
*
*
4
*
*

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Seguential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position “cr" of
the file, and the "cr" field is automatically incremented to the next
record position, If the "cr* field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next write operation. Write operations can take
place into an existing file, 1in which <case newly written records
overlay those which already exist in the file. Register A = @PH upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

LR ELE R AR RE R XSy IR T R SRR R S

* w
* FUNCTION 22: MAKE FILE *
* *
AkkxxAhhkhkAAhkrhhhhkkkkhkkhkhhkhkkhkhkr kA kAR A XK
* Entry Parameters: *
* Register C: 16H *
* Registers DE: FCB Address *
® *
* Returned value: *
* Register A: Directory Code *
I B SR ERRSS SRR ERRE RS R SRS R EEE RS R R

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "*dr" code, or the default disk if "dr" is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file, The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication, Upon return, register A = 9,
1, 2, or 3 if the operation was successful and @FFH (255 decimal) if
no more directory space 1is available, The make function has the
side~effect of activating the FCB and thus a subseguent open 1is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research,)

19

oo W Jr %k ok o dr dr e o Jh dk ok vk ke A ok ek e e e e ok o ae ke ok ok v e ok ok ok

- *
* FUNCTION 23: RENAME FILE b
* *

XA RX AKX EAA R X A A A AT Ak kA ARk krkrAxkkkkkx
* Entry Parameters:

Register C: 178
Registers DE: FCB Address

*

Returned Value:

Register A: Directory Code

*
*
x
*
*
WO ddk ko ok ok v e W ook o ok e de e % % gk ok ok o 3k o o o o o e ok Ok ik ke ok

*
*
*
w
X
*

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code “"dr" at position # is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero., Upon return, reglister A
is set to a value between B and 3 if the rename was successful, and
OFFH (255 decimal) if the first file name could not be found in the
directory scan.

RS R SRS REEEERRRRREESRERRRRSREER RS DR R

* *
* FUNCTION 24: RETURN LOGIN VECTOR *
x *

kA kR ek kkxdkkkkkkk

* Entry Parameters: *
Register C: 18H

Registers HL: Login Vector

x Y
w #
* Returned Value: *
n x
A A EX KA AR AN XA ARRETAA R KAK kW kR w

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A "2" bit indicates that the drive is not on-line, while
a "1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero “dr" field. Note that
cempatibility is maintained with earlier releases, since registers A
and L contain the same values upon return,

(All Information Contained Herein is Proprietary to Digital Research.)

20

KAk XA ARARKRR A A AR A kR ke Ak kA kA kAR K ARR NI

* *
* FUNCTION 25: RETURN CURRENT DISK *
* *

AR T AR R T AN R R AN RA TR AR RN AARA T RN A ARTAAAR

* Entry Parameters: *
Register C: 19%H

Register A: Current Disk

* *
* *
* Returned Value: *
x x
I R R R AR R SRR EE RS R R R R IR E TR R R R R ¢

‘ Function 25 returns the currently selected default disk number
in register A, The disk numbers range from 6 through 15 corresponding
to drives A through P,

I R R 2222223222232 2322222 i8R 2R R B B B 84

* *
* FUNCTION 26: SET DMA ADDRESS »
* *
IS SEE R RS RS RS RRR RS R ERRR RS RREE SR
* Entry Parameters: *
* Register C: 1laH *
* Registers DE: DMA Address *
* *

(A SRS RS EEREER LSRR AR Rl RdRRRRRERERS S

"DMA" is an acronym for Direct Memory Address, which 1is often
used 1in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem. Although many computer systems use non-DMA access (i.e.,
the data 1s transfered through programmed I/0 operations), the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read., Upon
cold start, warm start, or disk system reset, the DMA address 1is
avtomatically set to BOOT+9680H, The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside, Thus, the DMA address becomes the
value specified by DE until it is changed by a subseguent Set DMA
function, cold start, warm start, or disk system reset,

(All Information Contained Herein is Proprietary to Digital Research,)

21

B2 F2FZRZE3ESRR2SR 282 RR R RARSRRERSRED

*]
* PUNCTION 27: GET ADDR(ALLOC) *
4 w
I Z 3 EEEEFEEEEERS SRR RS0 SSRRSSSSERN]
* Entry Parameters: *
* Register C: 1BH *
* *
* Returned Value: *
* Registers HL: ALLOC Address *
RS RS R EEEEEERREEEERS SRS RSSSL RS S SEREE DS

An "allocation vector® is maintained in main memory for each
on—-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M BAlteration Guide."

L E SRS EE SRR SRS S RS SRR SRR R ERE RS S R

* X
* FUNCTION 28: WRITE PROTECT DISK :
w

(B S 222 RS RE R R R EES SRR RS R RRSERRRR SN
* Entry Parameters: *
* Register C: 1cCH *
¢ *

(A EEE SRR ES RSS2SR RS 22 82 8

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d4: R/O

(All Information Contained Herein is Proprietary to Digital Research.)

22

I EZSTETETEELEERESESSESER RS SR S8R SRR NS,

® *
* FUNCTION 29: GET READ/ONLY VECTOR *
* *
% % % 3k sk St e ok v W By vk sk ok e gk e ok sk vk g sk gk ok % o Ok ok W ok ok ok sk ok ke
* Entry Parameters: *
* Register C: 1DH *
* w
* Returned Value: *
* Registers HL: R/O Vector Value*
I B RS EE R REES R EEEEIS R RS EEEZEEE SRR FEETEETEEEE E'S

Function 29 returns a bit wvector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive &,
while the most significant bit corresponds to drive P. The R/0O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Wk 3K gk 3k ke ol W % Tk b ok Kk e sk ok vk ok sk ke ok ok ok ok e g ok ok ok ke
*

FONCTION 38: SET FILE ATTRIBUTES *

*

T Rk de sk YA R R W R K o kK e sk ko W gk Tk ok ok K ok ok ke ok W W

Entry Parameters: *
Register C: 1EH

Registers DE: FCB Address

Returned Value:

Register A: Directory Coge
L2222 SRS NEEEEENESEESSEESESEEE R SRS RS

% % % % R #* % X % % %

*
%*
*
*
*
*

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2') can be set or
reset, The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 38 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f£4' are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.

Indicators £5' through £8' and t3' are reserved for future system
expansion,

(All Information Contained Herein is Proprietary to Digital Research.)

23

KRNI AR kR kA ke h kR ARk kAR
* *
* PFUNCTION 31: GET ADDR(DISK PARMS) *
* %
AR IR AR RI AR AR IR AR R AR R A KA AR AN R kA A Xk k

* Entry Parameters:
Register C: 1FHd

Registers HL: DPB Address

*%
4 *
* *
* Returned Value: *
*« *
Ak dkhrd kA kb hkhkkhkkkihwk

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call., This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, application
programs will not require this facility.

LB RS ER SRS ERSSREER AR R RS R RS R R RS,

* x
* PUNCTION 32: SET/GET USER CODE *
> *

LB S S ERESERE RS R RESEEEEEEEESEEERRE SRS ERE &
* Entry Parameters: *
Register C: 20H
Register E: OFFH (get) or
User Code (set)

Register A: Current Code or

(no value)
Je fe g de & vr e de dr de it ok v ok A ok ke ok Kk dr dr kb gk ok ke ok ke

* w
w ”
* *
*x x
* Returned Value: *
x L 4
w *
L. *
An application program can change or interrogate the currently

active user number by calling function 32. If register E = @FFH, then
the wvalue of the current user number is returned in register A, where

the value is in the range 8 to 31. 1If register E is not B8FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research,)

24

/

KKK KR ARA AT AN ANARR AN T A AR A AR AR RN kW ke k
n

FUNCTION 33: READ RANDOM *

w
IR RS SRS RS RESER RS NESEEERRERERES RS RED S

»
*
*
*
* Entry Parameters:

* Register C: 21H
w

”

x

*

x

*

Registers DE: FCB Address

Returned Value:

Register A: Return Code
IR R AR RSP EEEENEESEESEISELTEEESEEEEREE R X

x
*
*
*
%
%

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r# at 33, rl at 34, and r2 at 35). Note that the seguence
of 24 bits 1is stored with least significant byte first (r89), middle
byte next (rl), and high byte last (r2)., CP/M does not reference byte
r2,.except in computing the size of a file (function 35). Byte r2
must be zero, however, since a non-zero value indicates overflow past
the end of file,

Thus, the rd,rl byte pair is treated as a double-byte, or "worgd"
value, which contains the record to read. This value ranges from 9 to
65535, providing access to any particular record of the 8 megabyte
file, 1In order to process a file using random access, the base extent
(extent @) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and 1is visible in DIR requests, The
selected record number is then stored into the random record field
(x®,rl), and the BDOS is called to read the record., Upon return from
the call, register A either contains an error code, as listed below,
or the value 09 indicating the operation was successful, In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the seguential read operation, the
record number 1is not advanced, Thus, subsequent random read -

operations continue to read the same record.

Upon each random read operation, the logical extent and current

record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position, Note, however, that 1in this case, the 1last

randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a seguential I/0 operation.

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Proprietary to Digital Research.)

25

Al reading unwritten data

B2 (not returned in random mode)
#3 cannot close current extent

g4 seek to unwritten extent

85 (not returned in read mode)

6 seek past physical end of disk

Error code @1 and 84 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 96 occurs whenever byte r2
is non-zero under the current 2.0 release., Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

(All Information Contained Berein is Proprietary to Digital Research.)

26

LA SRS RERESRRTERSRRRS RSS2SR SRR XS B
*

FUNCTION 34: WRITE RANDOM *

»
s sk de o A K e vk Je ve S e Rk ok e gk ok s e Y 3k sk o o e ok e o ok e ok e ok ke ok

4

w

*

*

* Entry Parameters: *
* Register C: 22H

* Registers DE: FCB Address
*
*
x
x

Returned Value:

Register A: Return Code
HRAAE R AN IR A AT YRR AR AR hAR

x
"
*
x
*
x

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Purther, if the disk extent or data block which 1is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues, As in the Read Random
operation, the random record number is not changed as a result of the

write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can

commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a seguential
write operation, Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode,

The error codes returned by a random write are identical to the
random read operation with the addition of error code 85, which
indicates that a new extent cannot be created due to directory
overflow,

(A1l Information Contained Herein is Proprietary to Digital Research.)

27

IS S SRS RS SRR SRS R REEERERLERRRRERREEEER

% w
* FUNCTION 35: COMPUTE FILE SIZE *
* x
*********ﬁ*****t***********************
* Entry Parameters: *
* Register C: 23H *
* Reglsters DE: FCB Address *
* b {
* Returned Value: *
* Random Record Field Set *
I P ET RS S SR EEEIEEESIEIEISISEESSEEE LS SR8 5.8 8 {

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r#, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan, Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 81, then the file contains the
maximum record count 65536, Otherwise, bytes rd and rl constitute a
l6-bit wvalue (r@ 1is the least significant byte, as before) which is
the file size.

‘ Data can be appended to the end of an existing file by simply
calling function 35 ¢to set the random record position to the end of

file, then performing a sequence of random writes starting at the
preset record address,

The virtual size of a file corresponds to the physical size when
the file is written sequentially, If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may

in fact contain fewer records than the s8ize 1indicates. If, for

example, only the last record of an eight megabyte file is written in
random mode (i,e,, record number 65535), then the wvirtual size 1is

65536 records, although only one block of data is actually allocated.

(All Information Contained Berein is Proprietary to Digital Research.)

28

22 AL BES SRS RS RSN ERRRERSRERSREERSRES
*

FUNCTION 36: SET RANDOM RECORD *
®

ARRK I A A kA AR A AR IR AR TR AR AR AR AT Ak AR Ak

Entry Parameters: *
Register C: 24R

Registers DE: FCB Address

Returned Value:

Random Record Field Set
Ak kA Ak kk kXX kxR k kb xkdhikhxhkxk kx

* % % X % % % % % % *

*
.4
*
*
*
*x

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or

written seguentially to a particular point, The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields, As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. 1If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record 1lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time,

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called which sets thé record number, and subsequent random read and
write operations continue from the selected point in the file.

(All Information Contained Herein is Proprietary to Digital Research,)

29

3. A SAMPLE FILE-TO-FILE COPY PROGRAM,

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a "HEX" file. The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at @86CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at B65CH is
properly set-up by the CCP upon entry to the COPY program. That 1is,
the first name is placed into the default fcb, with the proper fields

zeroed, including the current record field at @87CH, The program
contlnues by opening the source file, deleting any exising destination
file, and then creating the destination file. If all this 1is

successful, the program loops at the label COPY until each record has

been read from the source file and placed into the destination file,
Upon completion of the data transfer, the destination file 1is <closed

and the program returns to the CCP command level by jumping to BOOT,

sample file-to-file copy program
at the ccp level, the command
Copy a:x.y biu.v

copies the file named x.y from drive
a to a file named u.v on drive b.

P we We N2 WmE Ny N WP wa

0009 = boot egu 2080h ; system reboot
0805 = bdos equ 20@5h ; bdos entry point
g@5c = fcbl egu @85Sch ; first file name
B95c = sfcb equ fchl : source fcb
goéc = fcb2 equ @@6ch ; 8econd file name
6080 = dbuff egu 308ph ; default buffer
219¢ = tpa equ A1086h ; beginning of tpa
9009 = printf equ 9 ; print buffer funch
600f = openf equ 15 ; open file funck
001@ = closef equ 16 ; close file func#
gell = deletef equ 19 ; delete file funcé
pRl14 = readf equ 20 ; Seguential read
0615 = writef equ 21 ; sequential write
Bolée = make f equ 22 ; make file funcé
Ploo org tpa ; beginning of tpa
8198 311b@2 1xi. sp,stack; local stack

; move second file name to dfcb
#1903 gel@ mvi c,l6 ; half an fcb

(All Information Contained Herein is Proprietary to Digital Research.)

30

0105 116cP@ 1xi d,fcb2 source of move

2188 21dapl 1xi h,dfcb ; destination fcb
21¢b la mfcb: ldax d ; source fcb
81l6c 13 inx d ; ready next
glod 77 mov m,a ; dest fcb
Plge 23 inx h ; ready next
@l12f 9d dcr c ; count l16.,.0
2119 c20bdl jnz mfcb ; loop 16 times
: name has been moved, zero cr
113 af Xra a ; a = 06h
2114 32fagl sta dfcbcr ; current rec = @

source and destination fcb's ready

o ws wu

2117 115cg@ 1x1 d,sfcb ; source file
Plla cd69@l call open ; error if 255
9118 1187681 1xi d,nofile; ready message
6120 3c inr a ; 255 becomes 0
8121 cc61dl cz finis ; done if no file
; source file open, prep destination
2124 11danl 1xi d,dfcb ; destination
6127_cd73ﬁl call delete ; remove if present
#12a 11da0l Ixi d,dfcb ; Qdestination
012d cd8201 call make ; create the file
130 119681 1xi d,nodir ; ready message
2133 3¢ inr a ; 255 becomes 2
8134 cceldl cz finis ; done if no dir space
; source file open, dest file open
; copy until end of file on source
8137 115cB8 copy: 1xi d,sfcb ; source
01l3a ca7881 call read ; read next record
134 b7 ora a : end of file?
Pl3e c25101 inz eofile ; skip write if so0
H not end of file, write the record
#1411 1ldagl Ixi d,dfcb ; destination
2144 cd7del call write ; write record
0147 11a901l 1xi d,space ; ready message
®ld4a b7 ora a : PO if write ok
Bldb c46101 cnz finis : end if so
0l4e c33701 jmp copy ; loop until eof
eofile: ; end of file, close destination
8151 113ap1 Ixi d,dfcb ; destination
#1154 cdéenl call close ;3 255 if error
157 21bbdl 1xi h,wrprot; ready message
Bl5a 3c inr a ; 255 becomes 08
915b cc6lpl cz finis ; shouldn't happen

copy operation complete, end

-.

(All Information Contained Herein is Proprietary to Digital Research.)

31

d15e 1lccol 1xi d,normal; ready message

finis: ; write message given by de, reboot

#l61 Beds mvi c,printf
2163 cdp508 call bdos ; write message
gle6 c30000 jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

O o o wo s

0169 gedf pen: mvi c,openf
@léb c30509 jmp bdos
#lee Beld élose: mvi c,closef
8176 c39569 jmp bdos
8173 0ell éelete: mvi c,8eletef
8175 c30500 jmp bdos
8178 @eld read: mvi c,readf
@l7a c30508 jmp bdos
@173 Bel5 write: mvi c,writef
617f c385040 jmp bdos
0182 geléb make: mvi c,makef
0184 c30508 jmp bdos
; console messages
0187 6e6f28fnofile: db 'no source file$’
¥196 6e6£289nodir: 4db 'no directory space$’
8la9 6£7574fspace: db ‘out of data space$'
81lbb 7772685wrprot: db ‘write protected?s’
Blcc 636£76¢normal: db 'copy complete$’
s data areas
glda dfcb: ds 33 ; destination fcb
glfa = dfcbcr equ dfcb+32 ; current record
01fb ds 32 s 16 level stack
stack:
#21b end

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references. This situation

could be detected by scanning the 32 byte default area starting at
location @65CH for ASCII question marks. A check should also be made

to ensure that the file names have, in fact, been included (check
locations @B5DH and @86DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file

names are different. A speed improvement could be made by buffering
more data on each read operation, One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

the size of memory by fetching FBASE from location @896H and use the
entire remaining portion of memory for a Gata buffer. In this case,
the programmer simply resets the DMA address to the next successive

128 byte area before each read, Upon writing to the destination file,
the MA address is reset to the beginning of the buffer and

incremented by 128 bytes to the end as each record is transferred to
the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

4. A SAMPLE FILE DUMP UTILITY.

The file dump program shown below is slightly more complex than
the simple copy program given in the previous section, The dump
program reads an input file, specified in the CCP command 1line, and
displays the content of each record in hexadecimal format at the
console, Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing,

DUMP program reads input file and displays hex data

~s WO

0199 org 186h
go6es5 = bdos equ #095h ;dos entry point
gael = cons equ 1 ;read console
a2 = typef equ 2 stype function
poe9 = printf eqgu 9 ;buffer print entry
ggeb = brk £ equ 11 ;break key function (true if char
paef = openf egu 15 ;file open
po14 = readf egu 20 ;read function
905c = Ecb equ 5¢ch ;file control block address
po8e = buff equ 802h ;input disk buffer address
: non graphic characters
p@ed = cr egu @dh ;carriage return
g9da = 1f equ gah :line feed
; file control block definitions
B05¢c = fcbdn egu fcbo+d :disk name
0953 = fcbfn egu fcb+l ;£ile name
Pge6s = fcbft egqu fcb+9 ;disk file type (3 characters)
paes = fcbrl egu fcb+l2 ;file's current reel number
gg6b = fcbrc egqu fcot+l5 ;file's record count (8 to 128)
ga7¢c = fcber equ fcb+32 ;current (next) record number (@
Bp7d = fcbln equ fcb+33 ;fcb length
; set up stack
p1006 2190002 1xi h,
pl1e3 39 dad sp
; entry stack pointer in hl from the ccp
2194 221592 shld 0ldsp
3 set sp to local stack area (restored at finis)
9197 315782 1xi sp,stktop
; read and print successive buffers
0l%a cdclgl call setup ;Set up input file
0198 feff cpil 255 ;255 1f file not present
plof c21bol jnz openok ;skip if open is ok
: file not there, give error message and return
8112 11£361 1xi d,opnmsg
8115 cdochl call err
@118 c35181 jmp finis ;t0 return

(All Information Contained Herein is Proprietary to Digital Research,)

34

openok: ;open operation ok, set buffer index to end

pllb 3e890 mvi a,86h
11d 321392 sta ibp ;set buffer pointer to 8¢h
: hl contains next address to print
8120 2100040 1xi h,o ;jstart with 00080
4
gloop:
2123 e5 push h ;s5ave line position
9124 cda29l call gnb
127 el pop h ;recall line position
2128 daS5181 jec finis ;jcarry set by gnb if end file
pl2b 47 mov b,a

print hex values
check for line fold

) we

l2c 74 mov a,l
2128 e6@f ani gfh scheck low 4 bits
012f c24401] inz nonum
3 print line number
2132 cd7291 call crlf
; check for break key
8135 cds9al call break
; accum 1lsb = 1 if character ready
9138 Bf rrc ;into carry
9139 daS51e1 je finis ;don't print any more
P13c 7c ' mov a,h
9133 cdgfal call phex
#1409 74 mov a,l
2141 cdsfdl call phex
nonum:
9144 23 inx h 1 £t0 next line number
#145 3e28 mvi a,"' '
6147 cd6581 call pchar
gl4a 78 mov a,b
614b cdg8fol call phex
Blde c32301 jmp gloop
finis:
; end of dump, return to ccp
s (note that a jmp to 0608h reboots)
2151 cd7201 call crlf
8154 2al1502 lhld oldsp
8157 f9 sphl
; stack pointer contains ccp's stack location
@158 c9 ret ;to the ccp
subroutines

Ny wO wE Ny
o

reak: ;check break key (actually any key will do)

6159 e5d5cs push h| push d! push b; envirorment saved
015¢c Belb mvi c,brkf

#15e cdesod call bdos

161 cldlel pop b! pop d! pop h; enviromment restored

(All Information Contained Herein is Proprietary to Digital Research,)

35

3164 c9 ret

pchar: ;print a character

6165 e5d45c¢c5 push h! push d1 push b; saved
2168 Ped2 mvi c,typef
@léa 5fF mov e,a
@léb cdese8 call bdos
glée cldlel pop b! pop d! pop h; restored
8171 c9 ret
crlf:
172 3edad mvi a,cr
0174 cdeb591 call pchar
@177 3ePa mvi a,lf
@179 cdes5ol call pchar
gl7c cH ret
pnib: ;print nibble in req a
#1774 e6df ani Bfh ;low 4 bits
gl7f feBa cpi 14
2181 428941 inc pld
H less than or egual to 3
$184 c630 adi ‘g’
2186 c38bBl jmp prn
; greater or egual to 149
8189 c637 plé: adi '‘a' - 10
#18b cd658)1 prn: call pchar
g18e c9 ret
phex: ;print hex char in reg a
p18f £5 push psw
2198 OF rrc
#1191 @f rrc
@192 Of rrc
3193 Of rrcc
9194 cd7491 call pnib ;print nibble
9197 £1 pop psw
6198 cd7d401 call pnib
@19b <9 ret
err: ;print error message
: d,e addresses message ending with "§"
#1l9c QeSS mvi c,printf ;print buffer function
@219e cdps509 call bdos
glal c9 ret
gnb: ;get next byte
pla2 3al3e2 1da ibp
BlaS5 feB8 cpi 80h
Bla7d c2b3gl jnz ge
; read another buffer

-

(All Information Contained Herein is Proprietary to Digital Research,)

36

dlaa
P lad
Blae

81bl
1lb2

B1b3
01b4

g1bé
g1lb7

d1lba
9 1bd

@lbe

@1bf
D 1cd

dlcl
Blc?

P1lcs
91c8
@lca

g1cd

Olce
g1lal
p1ld4
#1486
@149
@lac

¢1ldad
P1f3

p213
2215

2217

3257

cdcedl
b7
cab3ipl

37
c9

5f
16400
3c
321302

218009
19

Te

b7
c9

af
327c00

115c@9
Gedf
cavs50e

cS

e5d5c5
115ce0
feld
cdeasen
cldlel
c9

46494cOsignon:
pd@adedopnmsg:

e wn

»
4
-

’

ibp:
oldsp:

[l
1

stktop:

14

call
ora

jz

diskr
a

gd

end of data,

stc
ret

;zero value if read ok
; for another byte

return with carry set for eof

;jread the byte at buff+reg a

mov
mvi
inr
sta

e,a
a,p
a

ibp

:1s byte of buffer index
;double precision index to de
sindex=index+l

;back to memory

pointer is incremented
save the current file address

1xi
dad

h,buf
d

f

absolute character address is in hl

mov

a,m

byte is in the accumulator

ora
ret

a

;set up file
open the file for input

Xra
sta

1xi
mvi
call

a
fcber

d,fcb

c,openf

bdos

255 in accum if

ret

;read disk file
push h! push 4!

1xi
mvi
call
pop bl
ret

a,fchb

c,readf

bdos
pop 4l

;reset carry bit

s;zero to accum

:clear current record

open errcor

record
push b

pop h

fixed message area
'file dump version 2,08’
cr,l1f,'no input file present on disk$’

db
db

variable area

ds
ds

2
2

stack area

ds

end

64

(211 Information Contained Herein 1is

37

;input buffer pointer
;entry sp value from ccp

;reserve 32 level stack

Proprietary to Digital Research,)

5. A SAMPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,

assembled, and placed into a file labelled RANDOM.COM, the CCP level
command:

RANDOM X.DAT

starts the test program, The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file 1is <created before the

prompt is given. Each prompt takes the form
next command?

and is followed by operator input, terminated by a carriage return,
The rnput commands take the form

nw nR Q

where n i1s an integer value in the range 8 to 65535, and W, R, and Q
"are simple command characters corresponding to random write, random
read, and quit processing, respectively, If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return, RANDOM then writes the character string into the
X.DAT file at record n,. If the R command is issued, RANDOM reads
record number n and displays the string value at the console, If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuocus loop at the
label “ready" where the individual commands are interpreted, The
default file control block at @65CH and the default buffer at 9080H
are used in all disk operations. The vtility subroutines then follow,
which contain the principal input 1line processor, called “readc.”
This particular program shows the elements of rangom access

processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

38

;****i***t***t*****it*i**i****ki****i**i*t******it**
W *
;¥ sample random access program for cp/m 2.8 *
W *
;iﬁti**i*i********ii*'ﬁ***iiii*t*iii*liii**iii*****i*

0100 org 180h ;base of tpa

990D = reboot equ podeon ;system reboot

0Bes = bdos equ 8805h ;bdos entry point

eRal = éoninp equ 1 ;console input function

P02 = conout egu 2 ;jconsole output function

ppe9 = pstring equ 9 ;print string vntil 'S*

gova = rstring equ 10 :read console buffer

goodc = version egu 12 ;return version number

PROEf = openft equ 15 ;file open function

pele = closef equ 16 ;close function

gole = make £ equ 22 ;make file function

g2l = readr egu 33 ;read random

0022 = writer egqu 34 ;write random

g95¢c = fch equ 905ch ;j8efault file control block

ge7d = ranrec egu fcb+33 ;random record position

geit = ranovf egu fcb+35 ;high order (overflow) byte

0080 = buff egu Bo8dh ;buffer address

goRa = cr equ 2dh ;carriage return

gpoa = 1€ equ gah ;line feed
;***i*******it*****xt*iitﬂt*it*t*i*i****tkt**tl*kt**
. *
;* load SP, set-up file for random access *
. x*
;t*k**ﬁlii*t***t****it*ii************t**i*ii*i*****i

100 31bchd 1xi sp,stack
2 version 2.0?

2103 BeBc mvi c,version

#1A5 cdess call bdos

0108 fe2p cpi 20h ;jversion 2.8 or better?

§loa 42160 jnc versok
; bad version, message and go back

0104 111bd 1xi d,badver

0118 cddag call print

2113 c38¢9 Jjmp reboot
versok:
H correct version for random access

Pll6 Pedf mvi c,openf ;open default fcb

2118 115ce 1xi d,fcb

811b cdp5é@ call bdos

8lle 3¢ inr a ;err 255 becomes zero

Bl11f c2379 jnz ready

~y wa

cannot open file, so create it

(311 Information Contained Herein is Proprietary to Digital Research,)

39

122 Bels mvi c,makef

124 115cH 1xi d,fchb
8127 cddsg call bdos
@l2a 3c inr a rerr 255 becomes zero
812b c2374 jnz ready
; cannot create file, directory full
gl2e 113ad I1xi d,nospace
p131 cddae call print
8134 c3080 jmp reboot ;back to ccp

AR kIR AT AR hk R bRk kb kbbb k Fhkhkhkhkkxk
x*

loop back to "ready" after each command *

X

Yo o A s vk drdr ok kA ok sk ok ok k& ok o do ok & A o ok o & i Y %k O e e ok o e ok o ok e g o o e ok e ok X

* % * %

e wp WP wEm wa WP NP

ready:
: file is ready for processing

2137 cde58 call readcom ;read next command

@l3a 22749 shld ranrec ;store input record#

g13d 217£€£9 1xi h,ranovf

Ppl4e 3608 mvi m,d ;clear high byte if set

3142 fe51 cpi 'Q’ ;quit?

8144 c25686 jnz notqg
: quit processing, close file

147 Geld mvi c,closef

@149 115cp 1xi d,fcb

#lac cdesé call bdos

pl4af 3c inr a ;err 255 becomes @

0150 cab9e jz error ;error message, retry

8153 c3000 jmp reboot ;back to ccp
;*****t********k******************************i*****
. W *
;* end of guit command, process write *
.k *
;*******i********k**********************************
notag:
; not the guit command, random write?

9156 fe57 cpi ‘W'

9158 c289¢ jnz notw
; this is a random write, fill buffer until cr

#15b 114a8 Ixi d,datmsg

#15e cddag call print ;data prompt

#1l6l Ge7f mvi c,127 ;up to 127 characters

d163 21880 1xi h,buff ;destination
r loop: sread next character to buff

@166 c5 push b ;save counter

@167 es push h ;next destination

2168 cdc2d call getchr j;character to a

gleb el pop h ;restore counter

(All Information Contained Herein is Proprietary to Digital Research.)

49

Bléec cl pop b srestore next to fill

164 fepBd cpi cr ;end of line?

glef ca788 jz erloop
; not end, store character

4172 77 mov m,a

B173 23 inx h ;next to fill

8174 @4 dcr c ;counter goes down

2175 c2669 jnz rloop :end of buffer?
erloop:
: end of read loop, store 00

8178 36049 mvi m,d
: write the record to selected record number

017a Be22 mvi c,writer

@l7¢c 115c@ 1xi d,fcb

Bl17f cdes59 call bdos

9182 b7 ora a ;error code zero?

2183 c2b9d jnz error ;message if not

#8186 c3378 Jjmp r e agdy ; for another record
;**ikﬁii*k********ii*ii**********t**i*ttlit*********
P *
;¥ end of write command, process read *
- X 4
;**********i*******i****************i***l****ﬁ*t****
notw:
; not a write command, read record?

9189 fe52 cpi 'R'

518b c2b9p inz error ;skip if not
: read random record

$l8e fe2l mvi c,readr

P19@ 115co 1xi d,fcb

0193 cdos5g call bdos

6196 b7 ora a ;return code 00?

9197 c2b%@ jnz error
H read was successful, write to console

$19a cdcfe call crlf :new line

0194 @Ge8p mvi c,128 ;max 128 characters

p19f 21808 1xi h,buff ;next to get
wloop:

gla2 Te mov a,m ;hext character

gla3 23 inx h ;next to get

#lad e67f ani 7fh ;mask parity

@laé ca37e0 jz ready ; for another commpand if @@

21a9 c5 push b ;Save counter

@laa es push h ;save next to get

2lab fe2d cpi P ;graphic?

lad d4c89@ cnc putchr ;skip output if not

g1bd el pop h

21bl cl pop b

91b2 B3 dcr c ;count=count-1

#1lb3 c2a28 jnz wloop

P1b6 c3370 jmp ready

(A1l Information Contained Herein is Proprietary to Digital Research.)

41

21b9

@ 1lbc
31bf

Plc2
fplcs
#1c?

81lcs
@lca
g 1lcb
dlce

@1lcfE
plal
91a4
2146
g1a9

®1da
g1ldb
Blde
pldf
flel
gled

g1le>s
Ple8
g leb
@led
#1fé

(All Information Contained Herein is Proprietary to Digital Research.,)

11599

cddad
c3370

dedl
cdase
c9

fed?2
5f
cdegso
c9

Jedd
cdc8d
JeBa
cdc8d
c9

dbs
cdcfp
dl
0ehl
cdpso
c9

ll6b0
cddad
feda

117ad
cdgs59

i
;***************************************!t**ii******
I* *
1
i* end of read command, all errors end-up here *
« X *
14
:***
H
error:

1xi d,errmsg

call print

Jjmp ready
/
;**********‘l*****t**********************************
;* *
;* utility subroutines for console i/o *
-k "
4

;***

getchr:
;read next console character to a

mvi c,coninp
call bdos
ret
putchr:
;write character from a to console
mvi c,conout
mov e,a ;character to send
call bdos ;send character
ret
crlf:
;send carriage return line feed
mvi a,cr scarriage return
call putchr
mvi a,lf ;line feed
call putchr
ret
print:
;print the buffer addressed by de until $
push d
call crlf
pop d ~ jnew line
mvi c,pstring
call bdos ;print the string
ret
readcom:
;read the next command line to the conbuf
1xi d,prompt
call print scommand?
mvi c,rstring
1xi d,conbuf
call bdos s;read command line

command line is present, scan it

-y

42

e

g1£3
Bplfe
91£f9
B1ifa
g1fb
plfc

g1fd
g1£f
2201

2294

9205
0206

p207
0298
2209
p28a
3820b
820c

g20f
p21¢

9213
9215
p217

p218
g21la

821b

A 23a
8244

2259

A26b

(A1l Information Contained

21009 1xi h,d ;start with 904de

117cH 1xi d,conlin;command line

la readc: 1ldax d ;:next command character

13 inx d ;to next command position

b7 ora a ;cannot be end of command

c8 rz
; not zero, numeric?

dé639 suil 9!

fepa cpi 10 ;carry if numeric

d2139 jnc endrd
: add-in next digit

29 dad h ;%2

44 mov c,l

44) mov b,h ;bec = value * 2

29 dad h » ¥4

29 dad h ;%8

29 dad b ;*¥2 + *8 = *1¢

BS add 1 ;+digit

6f mov 1l,a

d2£9p inc readc ;:for another char

24 inr h ;overflow

c3£f99 jmp readc ; for another char
endrd:
: end of read, restore value in a

c639 adi '9’ ;command

febl cpl ‘a' ;translate case?

ds rc
; lower case, mask lower case bits

e65f ani 10151111b

c9 ret
;ii**t*iiiit**i*tﬁttiii*t*i*titk******i*itit****it*t
. W b 4
;* string data area for console messages *
« W »
;*****i***iii**i**i**tit**t***ii***it‘k*********t****
badver:

536£79 db 'sorry, you need cp/m version 2$'
nospace:

4e6£29 db ‘no directory space$'
datmsg:

547974 db 'type data: §$°
errmsqg:

457272 db '‘error, try again,$’
prompt:

4e6579 db 'next command? $°

’

Herein is Proprietary to Digital Research.)

43

;*i******t**k****i*tti*t***ii********iti***i*i***tii

;¥ *
;¥ fixed and variable data area b
p X #*
;t******t***t*********i******t********t*************
g27a 21 conbuf: db conlen ;length of console buffer
g27b consiz: ds 1 sresulting size after read
g27c conlin: ds 32 slength 32 buffer
6821 = conlen equ $-consiz
@29c ! ds 32 ;16 level stack
stack:
¢ 2bc end

Again, major improvements could be made to this particular
program to enhance 1its operation, In fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, ¢the
command

GETKEY NAMES.DAT LASTNAME 10 28

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record, starting at position 18 and

ending at character 20. GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNAME,KEY, which is an alphabetical

list of LASTNAME fields with their corresponding record numbers.
(This list is called an “inverted 1index" 1in information retrieval

parlance,)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory, The command line might
appear as:

-

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which 1is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.REY list is sorted, you can find a particular entry
guite rapidly by performing a “binary search,” similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, vyou examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search,
You'll quickly reach the item you're looking for (in lo0g2(n) steps)
where you'll find the corresponding record number, Fetch and display
this record at the console, just as we have done in the program shown
above.

(All Information Contained Herein is Proprietary to Digital Research.)

44

At this point you're just getting started. With a 1little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the 4group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted,

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, 1if your 1lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: 1if you make it through the project,
you'll have no more need for this manuall

(All Information Contained Herein is Proprietary to Digital Research.)

45

6. SYSTEM FUNCTION SUMMARY,

FUNC FUNCTION NAME INPUT PARAMETERS OQOUTPOUOT RESULTS
a System Reset none none

1 Console Input none A = char

2 Console Output E = char none

3 Reader Input none A = char

4 Punch Output E = char none

5 List Qutput E = char none

6 Direct Console 1/0 see def see def

7 Get I/0 Byte none A = IOBYTE

8 Set I1/0 Byte E = IOBYTE none

9 Print String DE = .Buffer none

19 Read Console Buffer DE = .Buffer see def
11 Get Console Status none A = QQ/FF

12 Return Version Number none HL= Version*
13 Reset Disk System none see def
14 Select Disk E = Disk Number see def

15 Open File DE = .FCB A = Dir Code
16 Close File DE = _FCB A = Dir Code
17 Search for Pirst DE = .FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File DE = ,FCB A = Dir Code
29 Read Sequential DE = .FCB A = Erc Code
21 Write Sequential DE = .FCB A = Err Code
22 Make File DE = .FCB A = Dir Code
23 Rename File DE = .FCB A = Dir Code
24 Return Login Vector none HL= Login Vect*
25 Return Current Disk none A = Cur Diské
26 Set DMA Address DE = .DMA none

27 Get Addr(Alloc) none HL= .Alloc

28 Write Protect Disk none see def

29 Get R/O Vector none HL= R/O Vect~>
38 Set File Attributes DE = ,FCB see def

3] Get Addr(disk parms) none HL= ,DPB

32 Set/Get User Code see def see def
33 Read Random DE = ,FCB B = Err Code
34 Write Random DE = ,FCB A = Err Code
35 Compute File Size DE = _FCB rd, rl, r?2

36 Set Random Record DE = ,FCB rd, rl, r2

* Note that A = L, and B = H upon return

(All Information Contained Herein is Proprietary to Digital Research.)

46

